补充公式大全中的行列式
continuous-integration/drone/push Build is passing Details

main
InkSoul 2023-08-15 21:46:27 +08:00
parent 40810e50d1
commit 50526116d3
1 changed files with 234 additions and 0 deletions

View File

@ -14,8 +14,242 @@ date: 2022-12-24T13:05:40+08:00
设在某个过程中有两个变量x和y对变量x在允许的范围内的每一个确定的值变量y按照某一确定的法则总有相应的值与之对应则称y为x的函数记为y=f(x)
---
# 线性代数
## 行列式
### 行列式定义和性质
#### 行列式定义
n阶行列式
$$
\begin{vmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\\\
a_{21} & a_{22} & \cdots & a_{2n} \\\\
\vdots & \vdots & \ddots & \vdots \\\\
a_{n1} & a_{n2} & \cdots & a_{nn} \\\\
\end{vmatrix}
= \sum_{(j_1,j_2,\cdots j_n)}(-1)^{(j_1,j_2,\cdots j_n)}a_{1j_1}a_{2j_2} \cdots a_{nj}
$$
$\sum_{(j_1,j_2,\cdots j_n)}$表示对所有n级排列求和
#### 行列式性质
* 行列互换,行列式的值不变,也即$D=D^T$
* 任意两行(列)互换位置后,行列式改变符号
* 如果行列式中有两行对应元素相同则行列式的值为0
* 将行列式的某一行乘以一个常数k后行列式的值变为原来的k倍
* 如果行列式的某一行全为0则行列式的值等于0
* 行列式的某两行元素对应成比例则行列式的值等于0
* 如果行列式某一行(列)的所有元素都可以写成两个元素的和,则该行列式可以写成两个行列式的和,这两个行列式的这一行(列)分别对应两个加数,其余行(列)与原行列式相等
$$
\begin{vmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\\\
a_{21} & a_{22} & \cdots & a_{2n} \\\\
\vdots & \vdots & \ddots & \vdots \\\\
a_{i1}+b_{i1} & a_{i2}+b_{i2} & \ddots & a_{in}+b_{in} \\\\
\vdots & \vdots & \ddots & \vdots \\\\
a_{n1} & a_{n2} & \cdots & a_{nn} \\\\
\end{vmatrix} =
\begin{vmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\\\
a_{21} & a_{22} & \cdots & a_{2n} \\\\
\vdots & \vdots & \ddots & \vdots \\\\
a_{i1} & a_{i2} & \cdots & a_{in} \\\\
\vdots & \vdots & \ddots & \vdots \\\\
a_{n1} & a_{n2} & \cdots & a_{nn} \\\\
\end{vmatrix} +
\begin{vmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\\\
a_{21} & a_{22} & \cdots & a_{2n} \\\\
\vdots & \vdots & \vdots & \vdots \\\\
b_{i1} & b_{i2} & \cdots & b_{in} \\\\
\vdots & \vdots & \vdots & \vdots \\\\
a_{n1} & a_{n2} & \cdots & a_{nn} \\\\
\end{vmatrix}
$$
* 将行列式的某行的k倍加到另一行行列式的值不变
### 行列式展开定理
#### 余子式及代数余子式
在n阶行列式$D=|a_{ij}|$中,划掉$a_{ij}$所在第i行和第j列的所有元素后余下$(n-1)^2$个元素按照原有次序构成一个(n-1)阶行列式,称为元素$a_{ij}$在D中的余子式记作$M_{ij}$
$$
M_{ij} =
\begin{vmatrix}
a_{11} & a_{12} & \cdots & a_{1(j-1)} & a_{1(j+1)} & \cdots & a_{1n} \\\\
a_{21} & a_{22} & \cdots & a_{2(j-1)} & a_{2(j+1)} & \cdots & a_{2n} \\\\
\vdots & \vdots & \vdots& \vdots& \vdots& \vdots & \vdots \\\\
a_{(i-1)1} & a_{(i-1)2} & \cdots & a_{(i-1)(j-1)} & a_{(i-1)(j+1)} & \cdots & a_{(i-1)n} \\\\
a_{(i+1)1} & a_{(i+1)2} & \cdots & a_{(i+1)(j+1)} & a_{(i+1)(j+1)} & \cdots & a_{(i+1)n} \\\\
\vdots & \vdots & \vdots& \vdots& \vdots& \vdots & \vdots \\\\
a_{n1} & a_{n2} & \cdots & a_{n(j-1)} & a_{n(j+1)} & \cdots & a_{nn} \\\\
\end{vmatrix}
$$
记作$A_{ij} = (-1)^{i+j}M_{ij}$,称作元素$a_{ij}$的代数余子式
#### 行列式按一行(列)展开
n阶行列式D等于其任一行各元素与其代数余子式乘积之和
$D = a_{i1}A_{i1} + a_{i2}A_{i2} + \cdots +a_{in}A_{in}=\sum_{j=1}^na_{ij}A_{ij}(i=1,2,\cdots,n)=a_{1j}A_{1j} + a_{2j}A_{2j} + \cdots +a_{nj}A_{nj} = \sum_{i=1}^na_{ij}A_{ij}(j = 1,2,\cdots,n)$
推论:
行列式D的某一行各元素与另一行对应元素的代数余子式的乘积之和为零
$$
\sum_{j=1}^na_{ij}A_{kj}= a_{i1}A_{k1} + a_{i2}A_{k2} + \cdots +a_{in}A_{kn} = 0 (i\not ={k})
$$
$$
\sum_{j=1}^na_{ji}A_{jk}= a_{1i}A_{1k} + a_{2i}A_{2k} + \cdots +a_{ni}A_{nk} = 0 (i\not ={k})
$$
### 特殊行列式
#### 上三角、下三角、对角形行列式
$
\begin{vmatrix}
a_{11} & 0 & \cdots & 0 \\\\
0 & a_{22} & \cdots & 0 \\\\
\vdots & \vdots & \ddots & \vdots \\\\
0 & 0 & \cdots & a_{nn} \\\\
\end{vmatrix} =
\begin{vmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\\\
0 & a_{22} & \cdots & a_{2n} \\\\
\vdots & \vdots & \ddots & \vdots \\\\
0 & 0 & \cdots & a_{nn} \\\\
\end{vmatrix} =
\begin{vmatrix}
a_{11} & 0 & \cdots & 0 \\\\
a_{21} & a_{22} & \cdots & 0 \\\\
\vdots & \vdots & \ddots & \vdots \\\\
a_{n1} & a_{n2} & \cdots & a_{nn} \\\\
\end{vmatrix} =
a_{11}a_{22}\cdots a_{nn}
$
#### 次对角线行列式
$
\begin{vmatrix}
0 & \cdots & 0 & a_{1n} \\\\
0 & \cdots & 2_{2(n-1)} & 0\\\\
\vdots & \cdots & \vdots & \vdots \\\\
a_{nn} & \cdots & 0 & 0 \\\\
\end{vmatrix} =
\begin{vmatrix}
a_{11} & \cdots & a_{1(n-1)} & a_{1n} \\\\
a_{21} & \cdots & a_{2(n-1)} & 0\\\\
\vdots & \cdots & \vdots & \vdots \\\\
a_{n1} & \cdots & 0 & 0 \\\\
\end{vmatrix} =
\begin{vmatrix}
0 & \cdots & 0 & a_{1n} \\\\
0 & \cdots & a_{2(n-1)} & a_{2n}\\\\
\vdots & \cdots & \vdots & \vdots \\\\
a_{n1} & \cdots & a_{n(n-1)} & a_{nn} \\\\
\end{vmatrix} =
(-1)^{\frac{n(n-1)}{2}}a_{1n}\cdots a_{n1}
$
#### 范德蒙德行列式
$\begin{vmatrix}
1 & 1 & 1 & \cdots & 1 \\\\
a_1 & a_2 & a_3 & \cdots & a_n \\\\
a_1^2 & a_2^2 & a_3^2 & \cdots & a_n^2 \\\\
\vdots & \vdots & \vdots & \cdots & \vdots\\\\
a_1^{n-1} & a_2^{n-1} & a_3^{n-1} & \cdots & a_n^{n-1}
\end{vmatrix} =
\prod_{1\leq i < j \leq n}(a_j-a_i)
$
#### 拉普拉斯展开式
$
\begin{vmatrix}
a_{11} & a_{12} & \cdots & a_{1k} \\\\
a_{21} & a_{22} & \cdots & a_{2k} & & O_{k\times l} \\\\
\vdots & \vdots & & \vdots \\\\
a_{k1} & a_{k2} & \cdots & a_{kk} \\\\
c_{11} & c_{12} & \cdots & c_{1k} & b_{11} & b_{12} & \cdots & b_{1l} \\\\
c_{21} & c_{22} & \cdots & c_{2k} & b_{21} & b_{22} & \cdots & b_{2l} \\\\
\vdots & \vdots & & \vdots & \vdots & \vdots & &\vdots \\\\
c_{l1} & c_{l2} & \cdots & c_{lk} & b_{l1} & b_{l2} &\cdots & b_{ll}
\end{vmatrix} =
\begin{vmatrix}
a_{11} & a_{12} & \cdots & a_{1k} \\\\
a_{21} & a_{22} & \cdots & a_{2k}\\\\
\vdots & \cdots & \vdots & \vdots \\\\
a_{k1} & a_{k2} & \cdots & a_{kk} \\\\
\end{vmatrix}
\begin{vmatrix}
b_{11} & b_{12} & \cdots & b_{1l} \\\\
b_{21} & b_{22} & \cdots & b_{2l} \\\\
\vdots & \cdots & \vdots & \vdots \\\\
b_{l1} & b_{l2} &\cdots & b_{ll} \\\\
\end{vmatrix}
$
---
$
\begin{vmatrix}
c_{11} & c_{12} & \cdots & c_{1k} & b_{11} & b_{12} & \cdots & b_{1l} \\\\
c_{21} & c_{22} & \cdots & c_{2k} & b_{21} & b_{22} & \cdots & b_{2l} \\\\
\vdots & \vdots & & \vdots & \vdots & \vdots & &\vdots \\\\
c_{l1} & c_{l2} & \cdots & c_{lk} & b_{l1} & b_{l2} &\cdots & b_{ll} \\\\
a_{11} & a_{12} & \cdots & a_{1k} \\\\
a_{21} & a_{22} & \cdots & a_{2k} & & O_{k\times l} \\\\
\vdots & \vdots & & \vdots \\\\
a_{k1} & a_{k2} & \cdots & a_{kk}
\end{vmatrix} = (-1)^{kd}
\begin{vmatrix}
a_{11} & a_{12} & \cdots & a_{1k} \\\\
a_{21} & a_{22} & \cdots & a_{2k}\\\\
\vdots & \cdots & \vdots & \vdots \\\\
a_{k1} & a_{k2} & \cdots & a_{kk} \\\\
\end{vmatrix}
\begin{vmatrix}
b_{11} & b_{12} & \cdots & b_{1l} \\\\
b_{21} & b_{22} & \cdots & b_{2l} \\\\
\vdots & \cdots & \vdots & \vdots \\\\
b_{l1} & b_{l2} &\cdots & b_{ll} \\\\
\end{vmatrix}
$
### 行列式有关的重要公式
设AB均为n阶方阵k为常数E为n阶单位矩阵,A*为A的伴随矩阵
* $|kA| = k^n \cdot {|A|}$
* 若A是可逆矩阵则有$|A^{-1} = \frac{1}{|A|}$
* $|A \cdot B| = |A| \cdot |B|$
* |A*| = |A|^{n-1}
* $A \cdot A* = A* \cdot A = |A| \cdot E$
* $|A| = \prod_{i=1}^n\lambda_i(\lambda_1,\lambda_2,\cdots,\lambda_n是A的全部特征值)$
* $|A|\not ={0}\iff A$为可逆矩阵$\iff$A为满秩矩阵即$r(A) = n$
---
## 矩阵
### 矩阵定义
## 向量
### n维向量定义及其运算