完成《线性代数》克莱姆法则
continuous-integration/drone/push Build is passing
Details
|
@ -0,0 +1,78 @@
|
|||
---
|
||||
title: "《线性代数》克莱姆法则"
|
||||
date: 2023-08-11T21:07:47+08:00
|
||||
|
||||
---
|
||||
|
||||
## 克莱姆法则
|
||||
|
||||
克莱姆法则并非计算线性方程组的最好方法(高斯消元法),但能够加深对线性方程组的理解
|
||||
|
||||
|
||||
对于一个线性方程组
|
||||
$$
|
||||
\begin{cases}
|
||||
3x+2y &=-4 \\\\
|
||||
-1x+2y &=-2
|
||||
\end{cases}
|
||||
$$
|
||||
|
||||
可以将其看作对向量的一个已知的矩阵变换,且结果已知
|
||||
|
||||
$$
|
||||
\begin{bmatrix}
|
||||
3 & 2 \\\\
|
||||
-1 & 2
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix}
|
||||
x \\\\
|
||||
y
|
||||
\end{bmatrix} =
|
||||
\begin{bmatrix}
|
||||
-4 \\\\
|
||||
-2
|
||||
\end{bmatrix}
|
||||
$$
|
||||
|
||||

|
||||
|
||||
$$
|
||||
x\begin{bmatrix}
|
||||
3 \\\\
|
||||
-1
|
||||
\end{bmatrix} +
|
||||
y\begin{bmatrix}
|
||||
2 \\\\
|
||||
2
|
||||
\end{bmatrix} =
|
||||
\begin{bmatrix}
|
||||
-4 \\\\
|
||||
-2
|
||||
\end{bmatrix}
|
||||
$$
|
||||
|
||||
在计算时不能将点乘的结果视为x或y的坐标,因为点乘会随着线性变换而改变结果甚至正负性,但对于不改变点积的正交变换(基向量在变换后依然保持单位长度且相互垂直)则可以使用
|
||||
|
||||
|
||||

|
||||
|
||||
面积/体积与坐标值的关系
|
||||
|
||||

|
||||
|
||||

|
||||
|
||||
根据面积关系可以求出Y
|
||||
|
||||

|
||||
|
||||
X的求取同理
|
||||
|
||||

|
||||
|
||||
上述对XY的求取方式就是克莱姆法则
|
||||
|
||||
在三维下同样适用
|
||||
|
||||

|
||||
|
After Width: | Height: | Size: 2.1 MiB |
After Width: | Height: | Size: 23 MiB |
After Width: | Height: | Size: 36 MiB |
After Width: | Height: | Size: 39 MiB |
After Width: | Height: | Size: 40 MiB |
After Width: | Height: | Size: 5.8 MiB |
After Width: | Height: | Size: 41 MiB |