/////////////////////////////////////////////////////////////////////////// // // Copyright (c) 1998-2011, Industrial Light & Magic, a division of Lucas // Digital Ltd. LLC // // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Industrial Light & Magic nor the names of // its contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // /////////////////////////////////////////////////////////////////////////// #ifndef _PyImathMatrix_h_ #define _PyImathMatrix_h_ #include <Python.h> #include <boost/python.hpp> #include <PyImath.h> #include <ImathMatrix.h> #include <ImathMatrixAlgo.h> #include <PyImath.h> namespace PyImath { template <class T> boost::python::class_<IMATH_NAMESPACE::Matrix33<T> > register_Matrix33(); template <class T> boost::python::class_<IMATH_NAMESPACE::Matrix44<T> > register_Matrix44(); template <class T> boost::python::class_<FixedArray<IMATH_NAMESPACE::Matrix44<T> > > register_M44Array(); template <class T> boost::python::class_<FixedArray<IMATH_NAMESPACE::Matrix33<T> > > register_M33Array(); typedef FixedArray<IMATH_NAMESPACE::Matrix33<float> > M33fArray; typedef FixedArray<IMATH_NAMESPACE::Matrix33<double> > M33dArray; typedef FixedArray<IMATH_NAMESPACE::Matrix44<float> > M44fArray; typedef FixedArray<IMATH_NAMESPACE::Matrix44<double> > M44dArray; // // Other code in the Zeno code base assumes the existance of a class with the // same name as the Imath class, and with static functions wrap() and // convert() to produce a PyImath object from an Imath object and vice-versa, // respectively. The class Boost generates from the Imath class does not // have these properties, so we define a companion class here. // The template argument, T, is the element type (e.g.,float, double). template <class T> class M33 { public: static PyObject * wrap (const IMATH_NAMESPACE::Matrix33<T> &m); static int convert (PyObject *p, IMATH_NAMESPACE::Matrix33<T> *m); }; template <class T> class M44 { public: static PyObject * wrap (const IMATH_NAMESPACE::Matrix44<T> &m); static int convert (PyObject *p, IMATH_NAMESPACE::Matrix44<T> *m); }; template <class T> PyObject * M33<T>::wrap (const IMATH_NAMESPACE::Matrix33<T> &m) { typename boost::python::return_by_value::apply < IMATH_NAMESPACE::Matrix33<T> >::type converter; PyObject *p = converter (m); return p; } template <class T> PyObject * M44<T>::wrap (const IMATH_NAMESPACE::Matrix44<T> &m) { typename boost::python::return_by_value::apply < IMATH_NAMESPACE::Matrix44<T> >::type converter; PyObject *p = converter (m); return p; } template <class T> int M33<T>::convert (PyObject *p, IMATH_NAMESPACE::Matrix33<T> *m) { boost::python::extract <IMATH_NAMESPACE::M33f> extractorMf (p); if (extractorMf.check()) { IMATH_NAMESPACE::M33f e = extractorMf(); m->setValue (e); return 1; } boost::python::extract <IMATH_NAMESPACE::M33d> extractorMd (p); if (extractorMd.check()) { IMATH_NAMESPACE::M33d e = extractorMd(); m->setValue (e); return 1; } return 0; } template <class T> int M44<T>::convert (PyObject *p, IMATH_NAMESPACE::Matrix44<T> *m) { boost::python::extract <IMATH_NAMESPACE::M44f> extractorMf (p); if (extractorMf.check()) { IMATH_NAMESPACE::M44f e = extractorMf(); m->setValue (e); return 1; } boost::python::extract <IMATH_NAMESPACE::M44d> extractorMd (p); if (extractorMd.check()) { IMATH_NAMESPACE::M44d e = extractorMd(); m->setValue (e); return 1; } return 0; } template <class Matrix> boost::python::tuple jacobiEigensolve(const Matrix& m) { typedef typename Matrix::BaseType T; typedef typename Matrix::BaseVecType Vec; // For the C++ version, we just assume that the passed-in matrix is // symmetric, but we assume that many of our script users are less // sophisticated and might get tripped up by this. Also, the cost // of doing this check is likely miniscule compared to the Pythonic // overhead. // Give a fairly generous tolerance to account for possible epsilon drift: const int d = Matrix::dimensions(); const T tol = std::sqrt(IMATH_NAMESPACE::limits<T>::epsilon()); for (int i = 0; i < d; ++i) { for (int j = i+1; j < d; ++j) { const T Aij = m[i][j], Aji = m[j][i]; ASSERT (std::abs(Aij - Aji) < tol, IEX_NAMESPACE::ArgExc, "Symmetric eigensolve requires a symmetric matrix (matrix[i][j] == matrix[j][i])."); } } Matrix tmp = m; Matrix Q; Vec S; IMATH_NAMESPACE::jacobiEigenSolver (tmp, S, Q); return boost::python::make_tuple (Q, S); } typedef M33<float> M33f; typedef M33<double> M33d; typedef M44<float> M44f; typedef M44<double> M44d; } #endif