420 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			420 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
// This file is part of Eigen, a lightweight C++ template library
 | 
						|
// for linear algebra. 
 | 
						|
//
 | 
						|
// Copyright (C) 2009 Mark Borgerding mark a borgerding net
 | 
						|
//
 | 
						|
// This Source Code Form is subject to the terms of the Mozilla
 | 
						|
// Public License v. 2.0. If a copy of the MPL was not distributed
 | 
						|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | 
						|
 | 
						|
#ifndef EIGEN_FFT_H
 | 
						|
#define EIGEN_FFT_H
 | 
						|
 | 
						|
#include <complex>
 | 
						|
#include <vector>
 | 
						|
#include <map>
 | 
						|
#include <Eigen/Core>
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
  * \defgroup FFT_Module Fast Fourier Transform module
 | 
						|
  *
 | 
						|
  * \code
 | 
						|
  * #include <unsupported/Eigen/FFT>
 | 
						|
  * \endcode
 | 
						|
  *
 | 
						|
  * This module provides Fast Fourier transformation, with a configurable backend
 | 
						|
  * implementation.
 | 
						|
  *
 | 
						|
  * The default implementation is based on kissfft. It is a small, free, and
 | 
						|
  * reasonably efficient default.
 | 
						|
  *
 | 
						|
  * There are currently two implementation backend:
 | 
						|
  *
 | 
						|
  * - fftw (http://www.fftw.org) : faster, GPL -- incompatible with Eigen in LGPL form, bigger code size.
 | 
						|
  * - MKL (http://en.wikipedia.org/wiki/Math_Kernel_Library) : fastest, commercial -- may be incompatible with Eigen in GPL form.
 | 
						|
  *
 | 
						|
  * \section FFTDesign Design
 | 
						|
  *
 | 
						|
  * The following design decisions were made concerning scaling and
 | 
						|
  * half-spectrum for real FFT.
 | 
						|
  *
 | 
						|
  * The intent is to facilitate generic programming and ease migrating code
 | 
						|
  * from  Matlab/octave.
 | 
						|
  * We think the default behavior of Eigen/FFT should favor correctness and
 | 
						|
  * generality over speed. Of course, the caller should be able to "opt-out" from this
 | 
						|
  * behavior and get the speed increase if they want it.
 | 
						|
  *
 | 
						|
  * 1) %Scaling:
 | 
						|
  * Other libraries (FFTW,IMKL,KISSFFT)  do not perform scaling, so there
 | 
						|
  * is a constant gain incurred after the forward&inverse transforms , so 
 | 
						|
  * IFFT(FFT(x)) = Kx;  this is done to avoid a vector-by-value multiply.  
 | 
						|
  * The downside is that algorithms that worked correctly in Matlab/octave 
 | 
						|
  * don't behave the same way once implemented in C++.
 | 
						|
  *
 | 
						|
  * How Eigen/FFT differs: invertible scaling is performed so IFFT( FFT(x) ) = x. 
 | 
						|
  *
 | 
						|
  * 2) Real FFT half-spectrum
 | 
						|
  * Other libraries use only half the frequency spectrum (plus one extra 
 | 
						|
  * sample for the Nyquist bin) for a real FFT, the other half is the 
 | 
						|
  * conjugate-symmetric of the first half.  This saves them a copy and some 
 | 
						|
  * memory.  The downside is the caller needs to have special logic for the 
 | 
						|
  * number of bins in complex vs real.
 | 
						|
  *
 | 
						|
  * How Eigen/FFT differs: The full spectrum is returned from the forward 
 | 
						|
  * transform.  This facilitates generic template programming by obviating 
 | 
						|
  * separate specializations for real vs complex.  On the inverse
 | 
						|
  * transform, only half the spectrum is actually used if the output type is real.
 | 
						|
  */
 | 
						|
 
 | 
						|
 | 
						|
#ifdef EIGEN_FFTW_DEFAULT
 | 
						|
// FFTW: faster, GPL -- incompatible with Eigen in LGPL form, bigger code size
 | 
						|
#  include <fftw3.h>
 | 
						|
#  include "src/FFT/ei_fftw_impl.h"
 | 
						|
   namespace Eigen {
 | 
						|
     //template <typename T> typedef struct internal::fftw_impl  default_fft_impl; this does not work
 | 
						|
     template <typename T> struct default_fft_impl : public internal::fftw_impl<T> {};
 | 
						|
   }
 | 
						|
#elif defined EIGEN_MKL_DEFAULT
 | 
						|
// TODO 
 | 
						|
// intel Math Kernel Library: fastest, commercial -- may be incompatible with Eigen in GPL form
 | 
						|
#  include "src/FFT/ei_imklfft_impl.h"
 | 
						|
   namespace Eigen {
 | 
						|
     template <typename T> struct default_fft_impl : public internal::imklfft_impl {};
 | 
						|
   }
 | 
						|
#else
 | 
						|
// internal::kissfft_impl:  small, free, reasonably efficient default, derived from kissfft
 | 
						|
//
 | 
						|
# include "src/FFT/ei_kissfft_impl.h"
 | 
						|
  namespace Eigen {
 | 
						|
     template <typename T> 
 | 
						|
       struct default_fft_impl : public internal::kissfft_impl<T> {};
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
namespace Eigen {
 | 
						|
 | 
						|
 
 | 
						|
// 
 | 
						|
template<typename T_SrcMat,typename T_FftIfc> struct fft_fwd_proxy;
 | 
						|
template<typename T_SrcMat,typename T_FftIfc> struct fft_inv_proxy;
 | 
						|
 | 
						|
namespace internal {
 | 
						|
template<typename T_SrcMat,typename T_FftIfc>
 | 
						|
struct traits< fft_fwd_proxy<T_SrcMat,T_FftIfc> >
 | 
						|
{
 | 
						|
  typedef typename T_SrcMat::PlainObject ReturnType;
 | 
						|
};
 | 
						|
template<typename T_SrcMat,typename T_FftIfc>
 | 
						|
struct traits< fft_inv_proxy<T_SrcMat,T_FftIfc> >
 | 
						|
{
 | 
						|
  typedef typename T_SrcMat::PlainObject ReturnType;
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
template<typename T_SrcMat,typename T_FftIfc> 
 | 
						|
struct fft_fwd_proxy
 | 
						|
 : public ReturnByValue<fft_fwd_proxy<T_SrcMat,T_FftIfc> >
 | 
						|
{
 | 
						|
  typedef DenseIndex Index;
 | 
						|
 | 
						|
  fft_fwd_proxy(const T_SrcMat& src,T_FftIfc & fft, Index nfft) : m_src(src),m_ifc(fft), m_nfft(nfft) {}
 | 
						|
 | 
						|
  template<typename T_DestMat> void evalTo(T_DestMat& dst) const;
 | 
						|
 | 
						|
  Index rows() const { return m_src.rows(); }
 | 
						|
  Index cols() const { return m_src.cols(); }
 | 
						|
protected:
 | 
						|
  const T_SrcMat & m_src;
 | 
						|
  T_FftIfc & m_ifc;
 | 
						|
  Index m_nfft;
 | 
						|
private:
 | 
						|
  fft_fwd_proxy& operator=(const fft_fwd_proxy&);
 | 
						|
};
 | 
						|
 | 
						|
template<typename T_SrcMat,typename T_FftIfc> 
 | 
						|
struct fft_inv_proxy
 | 
						|
 : public ReturnByValue<fft_inv_proxy<T_SrcMat,T_FftIfc> >
 | 
						|
{
 | 
						|
  typedef DenseIndex Index;
 | 
						|
 | 
						|
  fft_inv_proxy(const T_SrcMat& src,T_FftIfc & fft, Index nfft) : m_src(src),m_ifc(fft), m_nfft(nfft) {}
 | 
						|
 | 
						|
  template<typename T_DestMat> void evalTo(T_DestMat& dst) const;
 | 
						|
 | 
						|
  Index rows() const { return m_src.rows(); }
 | 
						|
  Index cols() const { return m_src.cols(); }
 | 
						|
protected:
 | 
						|
  const T_SrcMat & m_src;
 | 
						|
  T_FftIfc & m_ifc;
 | 
						|
  Index m_nfft;
 | 
						|
private:
 | 
						|
  fft_inv_proxy& operator=(const fft_inv_proxy&);
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
template <typename T_Scalar,
 | 
						|
         typename T_Impl=default_fft_impl<T_Scalar> >
 | 
						|
class FFT
 | 
						|
{
 | 
						|
  public:
 | 
						|
    typedef T_Impl impl_type;
 | 
						|
    typedef DenseIndex Index;
 | 
						|
    typedef typename impl_type::Scalar Scalar;
 | 
						|
    typedef typename impl_type::Complex Complex;
 | 
						|
 | 
						|
    enum Flag {
 | 
						|
      Default=0, // goof proof
 | 
						|
      Unscaled=1,
 | 
						|
      HalfSpectrum=2,
 | 
						|
      // SomeOtherSpeedOptimization=4
 | 
						|
      Speedy=32767
 | 
						|
    };
 | 
						|
 | 
						|
    FFT( const impl_type & impl=impl_type() , Flag flags=Default ) :m_impl(impl),m_flag(flags) { }
 | 
						|
 | 
						|
    inline
 | 
						|
    bool HasFlag(Flag f) const { return (m_flag & (int)f) == f;}
 | 
						|
 | 
						|
    inline
 | 
						|
    void SetFlag(Flag f) { m_flag |= (int)f;}
 | 
						|
 | 
						|
    inline
 | 
						|
    void ClearFlag(Flag f) { m_flag &= (~(int)f);}
 | 
						|
 | 
						|
    inline
 | 
						|
    void fwd( Complex * dst, const Scalar * src, Index nfft)
 | 
						|
    {
 | 
						|
        m_impl.fwd(dst,src,static_cast<int>(nfft));
 | 
						|
        if ( HasFlag(HalfSpectrum) == false)
 | 
						|
          ReflectSpectrum(dst,nfft);
 | 
						|
    }
 | 
						|
 | 
						|
    inline
 | 
						|
    void fwd( Complex * dst, const Complex * src, Index nfft)
 | 
						|
    {
 | 
						|
        m_impl.fwd(dst,src,static_cast<int>(nfft));
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
    inline 
 | 
						|
    void fwd2(Complex * dst, const Complex * src, int n0,int n1)
 | 
						|
    {
 | 
						|
      m_impl.fwd2(dst,src,n0,n1);
 | 
						|
    }
 | 
						|
    */
 | 
						|
 | 
						|
    template <typename _Input>
 | 
						|
    inline
 | 
						|
    void fwd( std::vector<Complex> & dst, const std::vector<_Input> & src) 
 | 
						|
    {
 | 
						|
      if ( NumTraits<_Input>::IsComplex == 0 && HasFlag(HalfSpectrum) )
 | 
						|
        dst.resize( (src.size()>>1)+1); // half the bins + Nyquist bin
 | 
						|
      else
 | 
						|
        dst.resize(src.size());
 | 
						|
      fwd(&dst[0],&src[0],src.size());
 | 
						|
    }
 | 
						|
 | 
						|
    template<typename InputDerived, typename ComplexDerived>
 | 
						|
    inline
 | 
						|
    void fwd( MatrixBase<ComplexDerived> & dst, const MatrixBase<InputDerived> & src, Index nfft=-1)
 | 
						|
    {
 | 
						|
      typedef typename ComplexDerived::Scalar dst_type;
 | 
						|
      typedef typename InputDerived::Scalar src_type;
 | 
						|
      EIGEN_STATIC_ASSERT_VECTOR_ONLY(InputDerived)
 | 
						|
      EIGEN_STATIC_ASSERT_VECTOR_ONLY(ComplexDerived)
 | 
						|
      EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(ComplexDerived,InputDerived) // size at compile-time
 | 
						|
      EIGEN_STATIC_ASSERT((internal::is_same<dst_type, Complex>::value),
 | 
						|
            YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
 | 
						|
      EIGEN_STATIC_ASSERT(int(InputDerived::Flags)&int(ComplexDerived::Flags)&DirectAccessBit,
 | 
						|
            THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_WITH_DIRECT_MEMORY_ACCESS_SUCH_AS_MAP_OR_PLAIN_MATRICES)
 | 
						|
 | 
						|
      if (nfft<1)
 | 
						|
        nfft = src.size();
 | 
						|
 | 
						|
      if ( NumTraits< src_type >::IsComplex == 0 && HasFlag(HalfSpectrum) )
 | 
						|
        dst.derived().resize( (nfft>>1)+1);
 | 
						|
      else
 | 
						|
        dst.derived().resize(nfft);
 | 
						|
 | 
						|
      if ( src.innerStride() != 1 || src.size() < nfft ) {
 | 
						|
        Matrix<src_type,1,Dynamic> tmp;
 | 
						|
        if (src.size()<nfft) {
 | 
						|
          tmp.setZero(nfft);
 | 
						|
          tmp.block(0,0,src.size(),1 ) = src;
 | 
						|
        }else{
 | 
						|
          tmp = src;
 | 
						|
        }
 | 
						|
        fwd( &dst[0],&tmp[0],nfft );
 | 
						|
      }else{
 | 
						|
        fwd( &dst[0],&src[0],nfft );
 | 
						|
      }
 | 
						|
    }
 | 
						|
 
 | 
						|
    template<typename InputDerived>
 | 
						|
    inline
 | 
						|
    fft_fwd_proxy< MatrixBase<InputDerived>, FFT<T_Scalar,T_Impl> >
 | 
						|
    fwd( const MatrixBase<InputDerived> & src, Index nfft=-1)
 | 
						|
    {
 | 
						|
      return fft_fwd_proxy< MatrixBase<InputDerived> ,FFT<T_Scalar,T_Impl> >( src, *this,nfft );
 | 
						|
    }
 | 
						|
 | 
						|
    template<typename InputDerived>
 | 
						|
    inline
 | 
						|
    fft_inv_proxy< MatrixBase<InputDerived>, FFT<T_Scalar,T_Impl> >
 | 
						|
    inv( const MatrixBase<InputDerived> & src, Index nfft=-1)
 | 
						|
    {
 | 
						|
      return  fft_inv_proxy< MatrixBase<InputDerived> ,FFT<T_Scalar,T_Impl> >( src, *this,nfft );
 | 
						|
    }
 | 
						|
 | 
						|
    inline
 | 
						|
    void inv( Complex * dst, const Complex * src, Index nfft)
 | 
						|
    {
 | 
						|
      m_impl.inv( dst,src,static_cast<int>(nfft) );
 | 
						|
      if ( HasFlag( Unscaled ) == false)
 | 
						|
        scale(dst,Scalar(1./nfft),nfft); // scale the time series
 | 
						|
    }
 | 
						|
 | 
						|
    inline
 | 
						|
    void inv( Scalar * dst, const Complex * src, Index nfft)
 | 
						|
    {
 | 
						|
      m_impl.inv( dst,src,static_cast<int>(nfft) );
 | 
						|
      if ( HasFlag( Unscaled ) == false)
 | 
						|
        scale(dst,Scalar(1./nfft),nfft); // scale the time series
 | 
						|
    }
 | 
						|
 | 
						|
    template<typename OutputDerived, typename ComplexDerived>
 | 
						|
    inline
 | 
						|
    void inv( MatrixBase<OutputDerived> & dst, const MatrixBase<ComplexDerived> & src, Index nfft=-1)
 | 
						|
    {
 | 
						|
      typedef typename ComplexDerived::Scalar src_type;
 | 
						|
      typedef typename ComplexDerived::RealScalar real_type;
 | 
						|
      typedef typename OutputDerived::Scalar dst_type;
 | 
						|
      const bool realfft= (NumTraits<dst_type>::IsComplex == 0);
 | 
						|
      EIGEN_STATIC_ASSERT_VECTOR_ONLY(OutputDerived)
 | 
						|
      EIGEN_STATIC_ASSERT_VECTOR_ONLY(ComplexDerived)
 | 
						|
      EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(ComplexDerived,OutputDerived) // size at compile-time
 | 
						|
      EIGEN_STATIC_ASSERT((internal::is_same<src_type, Complex>::value),
 | 
						|
            YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
 | 
						|
      EIGEN_STATIC_ASSERT(int(OutputDerived::Flags)&int(ComplexDerived::Flags)&DirectAccessBit,
 | 
						|
            THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_WITH_DIRECT_MEMORY_ACCESS_SUCH_AS_MAP_OR_PLAIN_MATRICES)
 | 
						|
 | 
						|
      if (nfft<1) { //automatic FFT size determination
 | 
						|
        if ( realfft && HasFlag(HalfSpectrum) ) 
 | 
						|
          nfft = 2*(src.size()-1); //assume even fft size
 | 
						|
        else
 | 
						|
          nfft = src.size();
 | 
						|
      }
 | 
						|
      dst.derived().resize( nfft );
 | 
						|
 | 
						|
      // check for nfft that does not fit the input data size
 | 
						|
      Index resize_input= ( realfft && HasFlag(HalfSpectrum) )
 | 
						|
        ? ( (nfft/2+1) - src.size() )
 | 
						|
        : ( nfft - src.size() );
 | 
						|
 | 
						|
      if ( src.innerStride() != 1 || resize_input ) {
 | 
						|
        // if the vector is strided, then we need to copy it to a packed temporary
 | 
						|
        Matrix<src_type,1,Dynamic> tmp;
 | 
						|
        if ( resize_input ) {
 | 
						|
          size_t ncopy = (std::min)(src.size(),src.size() + resize_input);
 | 
						|
          tmp.setZero(src.size() + resize_input);
 | 
						|
          if ( realfft && HasFlag(HalfSpectrum) ) {
 | 
						|
            // pad at the Nyquist bin
 | 
						|
            tmp.head(ncopy) = src.head(ncopy);
 | 
						|
            tmp(ncopy-1) = real(tmp(ncopy-1)); // enforce real-only Nyquist bin
 | 
						|
          }else{
 | 
						|
            size_t nhead,ntail;
 | 
						|
            nhead = 1+ncopy/2-1; // range  [0:pi)
 | 
						|
            ntail = ncopy/2-1;   // range (-pi:0)
 | 
						|
            tmp.head(nhead) = src.head(nhead);
 | 
						|
            tmp.tail(ntail) = src.tail(ntail);
 | 
						|
            if (resize_input<0) { //shrinking -- create the Nyquist bin as the average of the two bins that fold into it
 | 
						|
              tmp(nhead) = ( src(nfft/2) + src( src.size() - nfft/2 ) )*real_type(.5);
 | 
						|
            }else{ // expanding -- split the old Nyquist bin into two halves
 | 
						|
              tmp(nhead) = src(nhead) * real_type(.5);
 | 
						|
              tmp(tmp.size()-nhead) = tmp(nhead);
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }else{
 | 
						|
          tmp = src;
 | 
						|
        }
 | 
						|
        inv( &dst[0],&tmp[0], nfft);
 | 
						|
      }else{
 | 
						|
        inv( &dst[0],&src[0], nfft);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    template <typename _Output>
 | 
						|
    inline
 | 
						|
    void inv( std::vector<_Output> & dst, const std::vector<Complex> & src,Index nfft=-1)
 | 
						|
    {
 | 
						|
      if (nfft<1)
 | 
						|
        nfft = ( NumTraits<_Output>::IsComplex == 0 && HasFlag(HalfSpectrum) ) ? 2*(src.size()-1) : src.size();
 | 
						|
      dst.resize( nfft );
 | 
						|
      inv( &dst[0],&src[0],nfft);
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    /*
 | 
						|
    // TODO: multi-dimensional FFTs
 | 
						|
    inline 
 | 
						|
    void inv2(Complex * dst, const Complex * src, int n0,int n1)
 | 
						|
    {
 | 
						|
      m_impl.inv2(dst,src,n0,n1);
 | 
						|
      if ( HasFlag( Unscaled ) == false)
 | 
						|
          scale(dst,1./(n0*n1),n0*n1);
 | 
						|
    }
 | 
						|
  */
 | 
						|
 | 
						|
    inline
 | 
						|
    impl_type & impl() {return m_impl;}
 | 
						|
  private:
 | 
						|
 | 
						|
    template <typename T_Data>
 | 
						|
    inline
 | 
						|
    void scale(T_Data * x,Scalar s,Index nx)
 | 
						|
    {
 | 
						|
#if 1
 | 
						|
      for (int k=0;k<nx;++k)
 | 
						|
        *x++ *= s;
 | 
						|
#else
 | 
						|
      if ( ((ptrdiff_t)x) & 15 )
 | 
						|
        Matrix<T_Data, Dynamic, 1>::Map(x,nx) *= s;
 | 
						|
      else
 | 
						|
        Matrix<T_Data, Dynamic, 1>::MapAligned(x,nx) *= s;
 | 
						|
         //Matrix<T_Data, Dynamic, Dynamic>::Map(x,nx) * s;
 | 
						|
#endif  
 | 
						|
    }
 | 
						|
 | 
						|
    inline
 | 
						|
    void ReflectSpectrum(Complex * freq, Index nfft)
 | 
						|
    {
 | 
						|
      // create the implicit right-half spectrum (conjugate-mirror of the left-half)
 | 
						|
      Index nhbins=(nfft>>1)+1;
 | 
						|
      for (Index k=nhbins;k < nfft; ++k )
 | 
						|
        freq[k] = conj(freq[nfft-k]);
 | 
						|
    }
 | 
						|
 | 
						|
    impl_type m_impl;
 | 
						|
    int m_flag;
 | 
						|
};
 | 
						|
 | 
						|
template<typename T_SrcMat,typename T_FftIfc> 
 | 
						|
template<typename T_DestMat> inline 
 | 
						|
void fft_fwd_proxy<T_SrcMat,T_FftIfc>::evalTo(T_DestMat& dst) const
 | 
						|
{
 | 
						|
    m_ifc.fwd( dst, m_src, m_nfft);
 | 
						|
}
 | 
						|
 | 
						|
template<typename T_SrcMat,typename T_FftIfc> 
 | 
						|
template<typename T_DestMat> inline 
 | 
						|
void fft_inv_proxy<T_SrcMat,T_FftIfc>::evalTo(T_DestMat& dst) const
 | 
						|
{
 | 
						|
    m_ifc.inv( dst, m_src, m_nfft);
 | 
						|
}
 | 
						|
 | 
						|
}
 | 
						|
#endif
 | 
						|
/* vim: set filetype=cpp et sw=2 ts=2 ai: */
 |