plumageRender/data/shaders/genbrdflut.frag

90 lines
2.9 KiB
GLSL
Raw Permalink Normal View History

#version 450
layout (location = 0) in vec2 inUV;
layout (location = 0) out vec4 outColor;
layout (constant_id = 0) const uint NUM_SAMPLES = 1024u;
const float PI = 3.1415926536;
// Based omn http://byteblacksmith.com/improvements-to-the-canonical-one-liner-glsl-rand-for-opengl-es-2-0/
float random(vec2 co)
{
float a = 12.9898;
float b = 78.233;
float c = 43758.5453;
float dt= dot(co.xy ,vec2(a,b));
float sn= mod(dt,3.14);
return fract(sin(sn) * c);
}
vec2 hammersley2d(uint i, uint N)
{
// Radical inverse based on http://holger.dammertz.org/stuff/notes_HammersleyOnHemisphere.html
uint bits = (i << 16u) | (i >> 16u);
bits = ((bits & 0x55555555u) << 1u) | ((bits & 0xAAAAAAAAu) >> 1u);
bits = ((bits & 0x33333333u) << 2u) | ((bits & 0xCCCCCCCCu) >> 2u);
bits = ((bits & 0x0F0F0F0Fu) << 4u) | ((bits & 0xF0F0F0F0u) >> 4u);
bits = ((bits & 0x00FF00FFu) << 8u) | ((bits & 0xFF00FF00u) >> 8u);
float rdi = float(bits) * 2.3283064365386963e-10;
return vec2(float(i) /float(N), rdi);
}
// Based on http://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_slides.pdf
vec3 importanceSample_GGX(vec2 Xi, float roughness, vec3 normal)
{
// Maps a 2D point to a hemisphere with spread based on roughness
float alpha = roughness * roughness;
float phi = 2.0 * PI * Xi.x + random(normal.xz) * 0.1;
float cosTheta = sqrt((1.0 - Xi.y) / (1.0 + (alpha*alpha - 1.0) * Xi.y));
float sinTheta = sqrt(1.0 - cosTheta * cosTheta);
vec3 H = vec3(sinTheta * cos(phi), sinTheta * sin(phi), cosTheta);
// Tangent space
vec3 up = abs(normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(1.0, 0.0, 0.0);
vec3 tangentX = normalize(cross(up, normal));
vec3 tangentY = normalize(cross(normal, tangentX));
// Convert to world Space
return normalize(tangentX * H.x + tangentY * H.y + normal * H.z);
}
// Geometric Shadowing function
float G_SchlicksmithGGX(float dotNL, float dotNV, float roughness)
{
float k = (roughness * roughness) / 2.0;
float GL = dotNL / (dotNL * (1.0 - k) + k);
float GV = dotNV / (dotNV * (1.0 - k) + k);
return GL * GV;
}
vec2 BRDF(float NoV, float roughness)
{
// Normal always points along z-axis for the 2D lookup
const vec3 N = vec3(0.0, 0.0, 1.0);
vec3 V = vec3(sqrt(1.0 - NoV*NoV), 0.0, NoV);
vec2 LUT = vec2(0.0);
for(uint i = 0u; i < NUM_SAMPLES; i++) {
vec2 Xi = hammersley2d(i, NUM_SAMPLES);
vec3 H = importanceSample_GGX(Xi, roughness, N);
vec3 L = 2.0 * dot(V, H) * H - V;
float dotNL = max(dot(N, L), 0.0);
float dotNV = max(dot(N, V), 0.0);
float dotVH = max(dot(V, H), 0.0);
float dotNH = max(dot(H, N), 0.0);
if (dotNL > 0.0) {
float G = G_SchlicksmithGGX(dotNL, dotNV, roughness);
float G_Vis = (G * dotVH) / (dotNH * dotNV);
float Fc = pow(1.0 - dotVH, 5.0);
LUT += vec2((1.0 - Fc) * G_Vis, Fc * G_Vis);
}
}
return LUT / float(NUM_SAMPLES);
}
void main()
{
outColor = vec4(BRDF(inUV.s, 1.0-inUV.t), 0.0, 1.0);
}