switch textureloader

ink-soul 2024-04-15 17:58:58 +08:00
parent 98a8b2c715
commit 1756c33c9b
5 changed files with 24 additions and 650 deletions

View File

@ -79,6 +79,7 @@ namespace vks
ktx_size_t ktxTextureSize = ktxTexture_GetSize(ktxTexture);
// Get device properties for the requested texture format
VkFormatProperties formatProperties;
vkGetPhysicalDeviceFormatProperties(device->physicalDevice, format, &formatProperties);
@ -87,6 +88,7 @@ namespace vks
// optimal tiling instead
// On most implementations linear tiling will only support a very
// limited amount of formats and features (mip maps, cubemaps, arrays, etc.)
VkBool32 useStaging = !forceLinear;
VkMemoryAllocateInfo memAllocInfo = vks::initializers::memoryAllocateInfo();

View File

@ -1,631 +0,0 @@
/*
* Vulkan texture loader
*
* Copyright(C) 2016-2017 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license(MIT) (http://opensource.org/licenses/MIT)
*/
#pragma once
#include <stdlib.h>
#include <string>
#include <fstream>
#include <vector>
#include "vulkan/vulkan.h"
#include "VulkanTools.h"
#include "VulkanDevice.hpp"
#define GLM_ENABLE_EXPERIMENTAL
#include <gli/gli.hpp>
namespace vks
{
class Texture {
public:
vks::VulkanDevice *device;
VkImage image = VK_NULL_HANDLE;
VkImageLayout imageLayout;
VkDeviceMemory deviceMemory;
VkImageView view;
uint32_t width, height;
uint32_t mipLevels;
uint32_t layerCount;
VkDescriptorImageInfo descriptor;
VkSampler sampler;
void updateDescriptor()
{
descriptor.sampler = sampler;
descriptor.imageView = view;
descriptor.imageLayout = imageLayout;
}
void destroy()
{
vkDestroyImageView(device->logicalDevice, view, nullptr);
vkDestroyImage(device->logicalDevice, image, nullptr);
if (sampler)
{
vkDestroySampler(device->logicalDevice, sampler, nullptr);
}
vkFreeMemory(device->logicalDevice, deviceMemory, nullptr);
}
};
class Texture2D : public Texture {
public:
void loadFromFile(
std::string filename,
VkFormat format,
vks::VulkanDevice *device,
VkQueue copyQueue,
VkImageUsageFlags imageUsageFlags = VK_IMAGE_USAGE_SAMPLED_BIT,
VkImageLayout imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL)
{
gli::texture2d tex2D(gli::load(filename.c_str()));
assert(!tex2D.empty());
this->device = device;
width = static_cast<uint32_t>(tex2D[0].extent().x);
height = static_cast<uint32_t>(tex2D[0].extent().y);
mipLevels = static_cast<uint32_t>(tex2D.levels());
// Get device properites for the requested texture format
VkFormatProperties formatProperties;
vkGetPhysicalDeviceFormatProperties(device->physicalDevice, format, &formatProperties);
VkMemoryAllocateInfo texMemAllocInfo{};
texMemAllocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
VkMemoryRequirements memReqs;
// Use a separate command buffer for texture loading
VkCommandBuffer copyCmd = device->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
// Create a host-visible staging buffer that contains the raw image data
VkBuffer stagingBuffer;
VkDeviceMemory stagingMemory;
VkBufferCreateInfo bufferCreateInfo{};
bufferCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufferCreateInfo.size = tex2D.size();
// This buffer is used as a transfer source for the buffer copy
bufferCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VK_CHECK_RESULT(vkCreateBuffer(device->logicalDevice, &bufferCreateInfo, nullptr, &stagingBuffer));
// Get memory requirements for the staging buffer (alignment, memory type bits)
vkGetBufferMemoryRequirements(device->logicalDevice, stagingBuffer, &memReqs);
texMemAllocInfo.allocationSize = memReqs.size;
// Get memory type index for a host visible buffer
texMemAllocInfo.memoryTypeIndex = device->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device->logicalDevice, &texMemAllocInfo, nullptr, &stagingMemory));
VK_CHECK_RESULT(vkBindBufferMemory(device->logicalDevice, stagingBuffer, stagingMemory, 0));
// Copy texture data into staging buffer
uint8_t *data;
VK_CHECK_RESULT(vkMapMemory(device->logicalDevice, stagingMemory, 0, memReqs.size, 0, (void **)&data));
memcpy(data, tex2D.data(), tex2D.size());
vkUnmapMemory(device->logicalDevice, stagingMemory);
// Setup buffer copy regions for each mip level
std::vector<VkBufferImageCopy> bufferCopyRegions;
uint32_t offset = 0;
for (uint32_t i = 0; i < mipLevels; i++)
{
VkBufferImageCopy bufferCopyRegion = {};
bufferCopyRegion.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
bufferCopyRegion.imageSubresource.mipLevel = i;
bufferCopyRegion.imageSubresource.baseArrayLayer = 0;
bufferCopyRegion.imageSubresource.layerCount = 1;
bufferCopyRegion.imageExtent.width = static_cast<uint32_t>(tex2D[i].extent().x);
bufferCopyRegion.imageExtent.height = static_cast<uint32_t>(tex2D[i].extent().y);
bufferCopyRegion.imageExtent.depth = 1;
bufferCopyRegion.bufferOffset = offset;
bufferCopyRegions.push_back(bufferCopyRegion);
offset += static_cast<uint32_t>(tex2D[i].size());
}
// Create optimal tiled target image
VkImageCreateInfo imageCreateInfo{};
imageCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.mipLevels = mipLevels;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageCreateInfo.extent = { width, height, 1 };
imageCreateInfo.usage = imageUsageFlags;
// Ensure that the TRANSFER_DST bit is set for staging
if (!(imageCreateInfo.usage & VK_IMAGE_USAGE_TRANSFER_DST_BIT))
{
imageCreateInfo.usage |= VK_IMAGE_USAGE_TRANSFER_DST_BIT;
}
VK_CHECK_RESULT(vkCreateImage(device->logicalDevice, &imageCreateInfo, nullptr, &image));
vkGetImageMemoryRequirements(device->logicalDevice, image, &memReqs);
texMemAllocInfo.allocationSize = memReqs.size;
texMemAllocInfo.memoryTypeIndex = device->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device->logicalDevice, &texMemAllocInfo, nullptr, &deviceMemory));
VK_CHECK_RESULT(vkBindImageMemory(device->logicalDevice, image, deviceMemory, 0));
VkImageSubresourceRange subresourceRange = {};
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subresourceRange.baseMipLevel = 0;
subresourceRange.levelCount = mipLevels;
subresourceRange.layerCount = 1;
// Image barrier for optimal image (target)
// Optimal image will be used as destination for the copy
{
VkImageMemoryBarrier imageMemoryBarrier{};
imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
imageMemoryBarrier.srcAccessMask = 0;
imageMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
imageMemoryBarrier.image = image;
imageMemoryBarrier.subresourceRange = subresourceRange;
vkCmdPipelineBarrier(copyCmd, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, 0, 0, nullptr, 0, nullptr, 1, &imageMemoryBarrier);
}
// Copy mip levels from staging buffer
vkCmdCopyBufferToImage(
copyCmd,
stagingBuffer,
image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
static_cast<uint32_t>(bufferCopyRegions.size()),
bufferCopyRegions.data()
);
// Change texture image layout to shader read after all mip levels have been copied
this->imageLayout = imageLayout;
{
VkImageMemoryBarrier imageMemoryBarrier{};
imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
imageMemoryBarrier.newLayout = imageLayout;
imageMemoryBarrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
imageMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
imageMemoryBarrier.image = image;
imageMemoryBarrier.subresourceRange = subresourceRange;
vkCmdPipelineBarrier(copyCmd, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, 0, 0, nullptr, 0, nullptr, 1, &imageMemoryBarrier);
}
device->flushCommandBuffer(copyCmd, copyQueue);
// Clean up staging resources
vkFreeMemory(device->logicalDevice, stagingMemory, nullptr);
vkDestroyBuffer(device->logicalDevice, stagingBuffer, nullptr);
VkSamplerCreateInfo samplerCreateInfo{};
samplerCreateInfo.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
samplerCreateInfo.magFilter = VK_FILTER_LINEAR;
samplerCreateInfo.minFilter = VK_FILTER_LINEAR;
samplerCreateInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
samplerCreateInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT;
samplerCreateInfo.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT;
samplerCreateInfo.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT;
samplerCreateInfo.mipLodBias = 0.0f;
samplerCreateInfo.compareOp = VK_COMPARE_OP_NEVER;
samplerCreateInfo.minLod = 0.0f;
samplerCreateInfo.maxLod = (float)mipLevels;
samplerCreateInfo.maxAnisotropy = device->enabledFeatures.samplerAnisotropy ? device->properties.limits.maxSamplerAnisotropy : 1.0f;
samplerCreateInfo.anisotropyEnable = device->enabledFeatures.samplerAnisotropy;
samplerCreateInfo.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
VK_CHECK_RESULT(vkCreateSampler(device->logicalDevice, &samplerCreateInfo, nullptr, &sampler));
VkImageViewCreateInfo viewCreateInfo{};
viewCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
viewCreateInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
viewCreateInfo.format = format;
viewCreateInfo.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A };
viewCreateInfo.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
viewCreateInfo.subresourceRange.levelCount = mipLevels;
viewCreateInfo.image = image;
VK_CHECK_RESULT(vkCreateImageView(device->logicalDevice, &viewCreateInfo, nullptr, &view));
updateDescriptor();
}
void loadFromBuffer(
void* buffer,
VkDeviceSize bufferSize,
VkFormat format,
uint32_t width,
uint32_t height,
vks::VulkanDevice *device,
VkQueue copyQueue,
VkFilter filter = VK_FILTER_LINEAR,
VkImageUsageFlags imageUsageFlags = VK_IMAGE_USAGE_SAMPLED_BIT,
VkImageLayout imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL)
{
assert(buffer);
this->device = device;
width = width;
height = height;
mipLevels = 1;
VkMemoryAllocateInfo memAllocInfo{};
memAllocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
VkMemoryRequirements memReqs;
// Use a separate command buffer for texture loading
VkCommandBuffer copyCmd = device->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
// Create a host-visible staging buffer that contains the raw image data
VkBuffer stagingBuffer;
VkDeviceMemory stagingMemory;
VkBufferCreateInfo bufferCreateInfo{};
bufferCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufferCreateInfo.size = bufferSize;
// This buffer is used as a transfer source for the buffer copy
bufferCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VK_CHECK_RESULT(vkCreateBuffer(device->logicalDevice, &bufferCreateInfo, nullptr, &stagingBuffer));
// Get memory requirements for the staging buffer (alignment, memory type bits)
vkGetBufferMemoryRequirements(device->logicalDevice, stagingBuffer, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
// Get memory type index for a host visible buffer
memAllocInfo.memoryTypeIndex = device->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device->logicalDevice, &memAllocInfo, nullptr, &stagingMemory));
VK_CHECK_RESULT(vkBindBufferMemory(device->logicalDevice, stagingBuffer, stagingMemory, 0));
// Copy texture data into staging buffer
uint8_t *data;
VK_CHECK_RESULT(vkMapMemory(device->logicalDevice, stagingMemory, 0, memReqs.size, 0, (void **)&data));
memcpy(data, buffer, bufferSize);
vkUnmapMemory(device->logicalDevice, stagingMemory);
VkBufferImageCopy bufferCopyRegion = {};
bufferCopyRegion.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
bufferCopyRegion.imageSubresource.mipLevel = 0;
bufferCopyRegion.imageSubresource.baseArrayLayer = 0;
bufferCopyRegion.imageSubresource.layerCount = 1;
bufferCopyRegion.imageExtent.width = width;
bufferCopyRegion.imageExtent.height = height;
bufferCopyRegion.imageExtent.depth = 1;
bufferCopyRegion.bufferOffset = 0;
// Create optimal tiled target image
VkImageCreateInfo imageCreateInfo{};
imageCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.mipLevels = mipLevels;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageCreateInfo.extent = { width, height, 1 };
imageCreateInfo.usage = imageUsageFlags;
// Ensure that the TRANSFER_DST bit is set for staging
if (!(imageCreateInfo.usage & VK_IMAGE_USAGE_TRANSFER_DST_BIT))
{
imageCreateInfo.usage |= VK_IMAGE_USAGE_TRANSFER_DST_BIT;
}
VK_CHECK_RESULT(vkCreateImage(device->logicalDevice, &imageCreateInfo, nullptr, &image));
vkGetImageMemoryRequirements(device->logicalDevice, image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
memAllocInfo.memoryTypeIndex = device->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device->logicalDevice, &memAllocInfo, nullptr, &deviceMemory));
VK_CHECK_RESULT(vkBindImageMemory(device->logicalDevice, image, deviceMemory, 0));
VkImageSubresourceRange subresourceRange = {};
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subresourceRange.baseMipLevel = 0;
subresourceRange.levelCount = mipLevels;
subresourceRange.layerCount = 1;
{
VkImageMemoryBarrier imageMemoryBarrier{};
imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
imageMemoryBarrier.srcAccessMask = 0;
imageMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
imageMemoryBarrier.image = image;
imageMemoryBarrier.subresourceRange = subresourceRange;
vkCmdPipelineBarrier(copyCmd, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, 0, 0, nullptr, 0, nullptr, 1, &imageMemoryBarrier);
}
vkCmdCopyBufferToImage(
copyCmd,
stagingBuffer,
image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1,
&bufferCopyRegion
);
this->imageLayout = imageLayout;
{
VkImageMemoryBarrier imageMemoryBarrier{};
imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
imageMemoryBarrier.newLayout = imageLayout;
imageMemoryBarrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
imageMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
imageMemoryBarrier.image = image;
imageMemoryBarrier.subresourceRange = subresourceRange;
vkCmdPipelineBarrier(copyCmd, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, 0, 0, nullptr, 0, nullptr, 1, &imageMemoryBarrier);
}
device->flushCommandBuffer(copyCmd, copyQueue);
// Clean up staging resources
vkFreeMemory(device->logicalDevice, stagingMemory, nullptr);
vkDestroyBuffer(device->logicalDevice, stagingBuffer, nullptr);
// Create sampler
VkSamplerCreateInfo samplerCreateInfo = {};
samplerCreateInfo.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
samplerCreateInfo.magFilter = filter;
samplerCreateInfo.minFilter = filter;
samplerCreateInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
samplerCreateInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT;
samplerCreateInfo.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT;
samplerCreateInfo.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT;
samplerCreateInfo.mipLodBias = 0.0f;
samplerCreateInfo.compareOp = VK_COMPARE_OP_NEVER;
samplerCreateInfo.minLod = 0.0f;
samplerCreateInfo.maxLod = 0.0f;
samplerCreateInfo.maxAnisotropy = 1.0f;
VK_CHECK_RESULT(vkCreateSampler(device->logicalDevice, &samplerCreateInfo, nullptr, &sampler));
// Create image view
VkImageViewCreateInfo viewCreateInfo = {};
viewCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
viewCreateInfo.pNext = NULL;
viewCreateInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
viewCreateInfo.format = format;
viewCreateInfo.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A };
viewCreateInfo.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
viewCreateInfo.subresourceRange.levelCount = 1;
viewCreateInfo.image = image;
VK_CHECK_RESULT(vkCreateImageView(device->logicalDevice, &viewCreateInfo, nullptr, &view));
// Update descriptor image info member that can be used for setting up descriptor sets
updateDescriptor();
}
};
class TextureCubeMap : public Texture {
public:
void loadFromFile(
std::string filename,
VkFormat format,
vks::VulkanDevice *device,
VkQueue copyQueue,
VkImageUsageFlags imageUsageFlags = VK_IMAGE_USAGE_SAMPLED_BIT,
VkImageLayout imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL)
{
#if defined(__ANDROID__)
// Textures are stored inside the apk on Android (compressed)
// So they need to be loaded via the asset manager
AAsset* asset = AAssetManager_open(androidApp->activity->assetManager, filename.c_str(), AASSET_MODE_STREAMING);
if (!asset) {
LOGE("Could not load texture %s", filename.c_str());
exit(-1);
}
size_t size = AAsset_getLength(asset);
assert(size > 0);
void *textureData = malloc(size);
AAsset_read(asset, textureData, size);
AAsset_close(asset);
gli::texture_cube texCube(gli::load((const char*)textureData, size));
free(textureData);
#else
gli::texture_cube texCube(gli::load(filename));
#endif
assert(!texCube.empty());
this->device = device;
width = static_cast<uint32_t>(texCube.extent().x);
height = static_cast<uint32_t>(texCube.extent().y);
mipLevels = static_cast<uint32_t>(texCube.levels());
VkMemoryAllocateInfo memAllocInfo{};
memAllocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
VkMemoryRequirements memReqs;
// Create a host-visible staging buffer that contains the raw image data
VkBuffer stagingBuffer;
VkDeviceMemory stagingMemory;
VkBufferCreateInfo bufferCreateInfo{};
bufferCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufferCreateInfo.size = texCube.size();
// This buffer is used as a transfer source for the buffer copy
bufferCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VK_CHECK_RESULT(vkCreateBuffer(device->logicalDevice, &bufferCreateInfo, nullptr, &stagingBuffer));
// Get memory requirements for the staging buffer (alignment, memory type bits)
vkGetBufferMemoryRequirements(device->logicalDevice, stagingBuffer, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
// Get memory type index for a host visible buffer
memAllocInfo.memoryTypeIndex = device->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device->logicalDevice, &memAllocInfo, nullptr, &stagingMemory));
VK_CHECK_RESULT(vkBindBufferMemory(device->logicalDevice, stagingBuffer, stagingMemory, 0));
// Copy texture data into staging buffer
uint8_t *data;
VK_CHECK_RESULT(vkMapMemory(device->logicalDevice, stagingMemory, 0, memReqs.size, 0, (void **)&data));
memcpy(data, texCube.data(), texCube.size());
vkUnmapMemory(device->logicalDevice, stagingMemory);
// Setup buffer copy regions for each face including all of it's miplevels
std::vector<VkBufferImageCopy> bufferCopyRegions;
size_t offset = 0;
for (uint32_t face = 0; face < 6; face++) {
for (uint32_t level = 0; level < mipLevels; level++) {
VkBufferImageCopy bufferCopyRegion = {};
bufferCopyRegion.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
bufferCopyRegion.imageSubresource.mipLevel = level;
bufferCopyRegion.imageSubresource.baseArrayLayer = face;
bufferCopyRegion.imageSubresource.layerCount = 1;
bufferCopyRegion.imageExtent.width = static_cast<uint32_t>(texCube[face][level].extent().x);
bufferCopyRegion.imageExtent.height = static_cast<uint32_t>(texCube[face][level].extent().y);
bufferCopyRegion.imageExtent.depth = 1;
bufferCopyRegion.bufferOffset = offset;
bufferCopyRegions.push_back(bufferCopyRegion);
// Increase offset into staging buffer for next level / face
offset += texCube[face][level].size();
}
}
// Create optimal tiled target image
VkImageCreateInfo imageCreateInfo{};
imageCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.mipLevels = mipLevels;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageCreateInfo.extent = { width, height, 1 };
imageCreateInfo.usage = imageUsageFlags;
// Ensure that the TRANSFER_DST bit is set for staging
if (!(imageCreateInfo.usage & VK_IMAGE_USAGE_TRANSFER_DST_BIT)) {
imageCreateInfo.usage |= VK_IMAGE_USAGE_TRANSFER_DST_BIT;
}
// Cube faces count as array layers in Vulkan
imageCreateInfo.arrayLayers = 6;
// This flag is required for cube map images
imageCreateInfo.flags = VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
VK_CHECK_RESULT(vkCreateImage(device->logicalDevice, &imageCreateInfo, nullptr, &image));
vkGetImageMemoryRequirements(device->logicalDevice, image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
memAllocInfo.memoryTypeIndex = device->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device->logicalDevice, &memAllocInfo, nullptr, &deviceMemory));
VK_CHECK_RESULT(vkBindImageMemory(device->logicalDevice, image, deviceMemory, 0));
// Use a separate command buffer for texture loading
VkCommandBuffer copyCmd = device->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
// Image barrier for optimal image (target)
// Set initial layout for all array layers (faces) of the optimal (target) tiled texture
VkImageSubresourceRange subresourceRange = {};
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subresourceRange.baseMipLevel = 0;
subresourceRange.levelCount = mipLevels;
subresourceRange.layerCount = 6;
{
VkImageMemoryBarrier imageMemoryBarrier{};
imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
imageMemoryBarrier.srcAccessMask = 0;
imageMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
imageMemoryBarrier.image = image;
imageMemoryBarrier.subresourceRange = subresourceRange;
vkCmdPipelineBarrier(copyCmd, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, 0, 0, nullptr, 0, nullptr, 1, &imageMemoryBarrier);
}
// Copy the cube map faces from the staging buffer to the optimal tiled image
vkCmdCopyBufferToImage(
copyCmd,
stagingBuffer,
image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
static_cast<uint32_t>(bufferCopyRegions.size()),
bufferCopyRegions.data());
// Change texture image layout to shader read after all faces have been copied
this->imageLayout = imageLayout;
{
VkImageMemoryBarrier imageMemoryBarrier{};
imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
imageMemoryBarrier.newLayout = imageLayout;
imageMemoryBarrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
imageMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
imageMemoryBarrier.image = image;
imageMemoryBarrier.subresourceRange = subresourceRange;
vkCmdPipelineBarrier(copyCmd, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, 0, 0, nullptr, 0, nullptr, 1, &imageMemoryBarrier);
}
device->flushCommandBuffer(copyCmd, copyQueue);
// Create sampler
VkSamplerCreateInfo samplerCreateInfo{};
samplerCreateInfo.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
samplerCreateInfo.magFilter = VK_FILTER_LINEAR;
samplerCreateInfo.minFilter = VK_FILTER_LINEAR;
samplerCreateInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
samplerCreateInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samplerCreateInfo.addressModeV = samplerCreateInfo.addressModeU;
samplerCreateInfo.addressModeW = samplerCreateInfo.addressModeU;
samplerCreateInfo.mipLodBias = 0.0f;
samplerCreateInfo.maxAnisotropy = device->enabledFeatures.samplerAnisotropy ? device->properties.limits.maxSamplerAnisotropy : 1.0f;
samplerCreateInfo.anisotropyEnable = device->enabledFeatures.samplerAnisotropy;
samplerCreateInfo.compareOp = VK_COMPARE_OP_NEVER;
samplerCreateInfo.minLod = 0.0f;
samplerCreateInfo.maxLod = (float)mipLevels;
samplerCreateInfo.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
VK_CHECK_RESULT(vkCreateSampler(device->logicalDevice, &samplerCreateInfo, nullptr, &sampler));
// Create image view
VkImageViewCreateInfo viewCreateInfo{};
viewCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
viewCreateInfo.viewType = VK_IMAGE_VIEW_TYPE_CUBE;
viewCreateInfo.format = format;
viewCreateInfo.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A };
viewCreateInfo.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
viewCreateInfo.subresourceRange.layerCount = 6;
viewCreateInfo.subresourceRange.levelCount = mipLevels;
viewCreateInfo.image = image;
VK_CHECK_RESULT(vkCreateImageView(device->logicalDevice, &viewCreateInfo, nullptr, &view));
// Clean up staging resources
vkFreeMemory(device->logicalDevice, stagingMemory, nullptr);
vkDestroyBuffer(device->logicalDevice, stagingBuffer, nullptr);
// Update descriptor image info member that can be used for setting up descriptor sets
updateDescriptor();
}
};
}

View File

@ -7,7 +7,7 @@
#include "imgui/imgui.h"
#include "VulkanDevice.hpp"
#include "VulkanUtils.hpp"
#include "VulkanTexture.hpp"
#include "VulkanTexture.h"
#if defined(__ANDROID__)
#include <android/asset_manager.h>
@ -64,7 +64,7 @@ public:
io.Fonts->AddFontFromFileTTF(ttfFilePath.data(), 16.0f,NULL, io.Fonts->GetGlyphRangesChineseSimplifiedCommon());
#endif
io.Fonts->GetTexDataAsRGBA32(&fontData, &texWidth, &texHeight);
fontTexture.loadFromBuffer(fontData, texWidth * texHeight * 4 * sizeof(char), VK_FORMAT_R8G8B8A8_UNORM, texWidth, texHeight, vulkanDevice, queue);
fontTexture.fromBuffer(fontData, texWidth * texHeight * 4 * sizeof(char), VK_FORMAT_R8G8B8A8_UNORM, texWidth, texHeight, vulkanDevice, queue);
/*
Setup

View File

@ -694,11 +694,10 @@ void PlumageRender::createImageView()
VkMemoryAllocateInfo memAllocInfo{};
memAllocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
memAllocInfo.allocationSize = memReqs.size;
VkBool32 lazyMemTypePresent;
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT, &lazyMemTypePresent);
if (!lazyMemTypePresent) {
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
}
memAllocInfo.memoryTypeIndex = getMemoryTypeIndex(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &multisampleTarget.colorAttachment.memory));
vkBindImageMemory(device, multisampleTarget.colorAttachment.image, multisampleTarget.colorAttachment.memory, 0);
@ -735,10 +734,9 @@ void PlumageRender::createImageView()
vkGetImageMemoryRequirements(device, multisampleTarget.depthAttachment.image, &memReqs);
memAllocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
memAllocInfo.allocationSize = memReqs.size;
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT, &lazyMemTypePresent);
if (!lazyMemTypePresent) {
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
}
memAllocInfo.memoryTypeIndex = getMemoryTypeIndex(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &multisampleTarget.depthAttachment.memory));
vkBindImageMemory(device, multisampleTarget.depthAttachment.image, multisampleTarget.depthAttachment.memory, 0);
@ -1220,8 +1218,7 @@ void PlumageRender::loadAssets()
readDirectory(assetpath + "environments", "*.ktx", environments, false);
textures.empty.loadFromFile(PlumageRender::filePath.emptyEnvmapFilePath, VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, graphicQueue);
std::string sceneFile = filePath.glTFModelFilePath;
std::string envMapFile = filePath.envMapFilePath;
for (size_t i = 0; i < args.size(); i++) {
@ -1245,9 +1242,13 @@ void PlumageRender::loadAssets()
}
}
loadScene(sceneFile.c_str());
models.skybox.loadFromFile(PlumageRender::filePath.skyboxModleFilePath, vulkanDevice, graphicQueue);
models.skybox.loadFromFile(PlumageRender::filePath.skyboxModleFilePath, vulkanDevice, graphicQueue);
loadScene(sceneFile.c_str());
textures.empty.loadFromFile(PlumageRender::filePath.emptyEnvmapFilePath, VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, graphicQueue);
loadEnvironment(envMapFile.c_str());
}
@ -2542,9 +2543,10 @@ void PlumageRender::prepare()
createPipelineCache();
createImageView();
createFramebuffer();
camera.type = Camera::CameraType::lookat;
camera.setPerspective(45.0f, (float)settings.width / (float)settings.height, 0.1f, 256.0f);
@ -2582,14 +2584,15 @@ void PlumageRender::prepare()
VK_CHECK_RESULT(vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, commandBuffers.data()));
}
loadAssets();
generateBRDFLUT();
generateCubemaps();
prepareUniformBuffers();
setupDescriptors();
preparePipelines();
//gui = new UI(vulkanDevice, renderPass, graphicQueue, pipelineCache, settings.sampleCount);
//updateUIOverlay();

View File

@ -38,7 +38,7 @@
#include <vulkan/vulkan.h>
//#include "VulkanExampleBase.h"
#include "glTFModel.h"
#include <VulkanTexture.hpp>
#include <VulkanTexture.h>
#include "VulkanDevice.hpp"
#include "ui.hpp"
#include <VulkanUtils.hpp>