update irradiance caculation

pull/2/head
ink-soul 2023-05-24 16:10:36 +08:00
parent 441aca4df4
commit 463ac6fe59
3 changed files with 999 additions and 9 deletions

View File

@ -20,6 +20,17 @@
"cmakeCommandArgs": "",
"buildCommandArgs": "",
"ctestCommandArgs": "",
"inheritEnvironments": [ "clang_cl_x64_x64" ]
},
{
"name": "x64-Clang-Release",
"generator": "Ninja",
"configurationType": "RelWithDebInfo",
"buildRoot": "${projectDir}\\out\\build\\${name}",
"installRoot": "${projectDir}\\out\\install\\${name}",
"cmakeCommandArgs": "",
"buildCommandArgs": "",
"ctestCommandArgs": "",
"inheritEnvironments": [ "clang_cl_x64_x64" ],
"variables": []
}

View File

@ -830,7 +830,7 @@ void VulkanExample::getEnabledFeatures()
}
}
void VulkanExample::loadglTFFile(std::string filename)
void VulkanExample::loadglTFFile(std::string filename, VulkanglTFModel& model, bool bSkyboxFlag = false)
{
tinygltf::Model glTFInput;
tinygltf::TinyGLTF gltfContext;
@ -900,10 +900,7 @@ void VulkanExample::getEnabledFeatures()
size_t indexBufferSize = indexBuffer.size() * sizeof(uint32_t);
glTFModel.indices.count = static_cast<uint32_t>(indexBuffer.size());
struct StagingBuffer {
VkBuffer buffer;
VkDeviceMemory memory;
} vertexStaging, indexStaging;
// Create host visible staging buffers (source)
VK_CHECK_RESULT(vulkanDevice->createBuffer(
@ -969,7 +966,9 @@ void VulkanExample::getEnabledFeatures()
void VulkanExample::loadAssets()
{
loadglTFFile(getAssetPath() + "buster_drone/busterDrone.gltf");
loadglTFFile(getAssetPath() + "buster_drone/busterDrone.gltf",glTFModel);
loadglTFFile(getAssetPath() + "models/cube.gltf", skyboxModel, true);
ibltextures.skyboxCube.loadFromFile(getAssetPath() + "textures/hdr/pisa_cube.ktx", VK_FORMAT_R16G16B16A16_SFLOAT, vulkanDevice, queue);
}
void VulkanExample::setupDescriptors()
@ -1056,7 +1055,6 @@ void VulkanExample::getEnabledFeatures()
vks::initializers::writeDescriptorSet(descriptorSet,VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,1,&ibltextures.irradianceCube.descriptor),
vks::initializers::writeDescriptorSet(descriptorSet,VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,2,&ibltextures.lutBrdf.descriptor),
vks::initializers::writeDescriptorSet(descriptorSet,VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,3,&ibltextures.prefilteredCube.descriptor),
};
vkUpdateDescriptorSets(device, 4, writeDescriptorSets.data(), 0, nullptr);
@ -1256,6 +1254,954 @@ void VulkanExample::getEnabledFeatures()
memcpy(shaderData.buffer.mapped, &shaderData.values, sizeof(shaderData.values));
}
// --------- BRDF LUT precompute preparation ----------------
void VulkanExample::generateIrradianceCubemap()
{
auto tStart = std::chrono::high_resolution_clock::now();
constexpr VkFormat format = VK_FORMAT_R32G32B32A32_SFLOAT;
constexpr int32_t dim = 64;
const uint32_t numMips = static_cast<uint32_t>(floor(log2(dim))) + 1;
VkImageCreateInfo imageCI = vks::initializers::imageCreateInfo();
imageCI.imageType = VK_IMAGE_TYPE_2D;
imageCI.format = format;
imageCI.extent.width = dim;
imageCI.extent.height = dim;
imageCI.extent.depth = 1;
imageCI.mipLevels = numMips;
imageCI.arrayLayers = 6;
imageCI.samples = VK_SAMPLE_COUNT_1_BIT;
imageCI.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCI.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
imageCI.flags = VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
VK_CHECK_RESULT(vkCreateImage(device, &imageCI, nullptr, &ibltextures.irradianceCube.image))
// allocate memory for irradiance cube map
VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
vkGetImageMemoryRequirements(device, ibltextures.irradianceCube.image, &memReqs);
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &ibltextures.irradianceCube.deviceMemory))
VK_CHECK_RESULT(vkBindImageMemory(device, ibltextures.irradianceCube.image, ibltextures.irradianceCube.deviceMemory, 0))
VkImageViewCreateInfo viewCI = vks::initializers::imageViewCreateInfo();
viewCI.viewType = VK_IMAGE_VIEW_TYPE_CUBE;
viewCI.format = format;
viewCI.subresourceRange = {};
viewCI.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
viewCI.subresourceRange.levelCount = numMips;
viewCI.subresourceRange.layerCount = 6;
viewCI.image = ibltextures.irradianceCube.image;
VK_CHECK_RESULT(vkCreateImageView(device, &viewCI, nullptr, &ibltextures.irradianceCube.view))
// set up sampler and image view
VkSamplerCreateInfo samplerCI = vks::initializers::samplerCreateInfo();
samplerCI.magFilter = VK_FILTER_LINEAR;
samplerCI.minFilter = VK_FILTER_LINEAR;
samplerCI.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
samplerCI.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samplerCI.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samplerCI.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samplerCI.minLod = 0.0f;
samplerCI.maxLod = static_cast<float>(numMips);
samplerCI.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
VK_CHECK_RESULT(vkCreateSampler(device, &samplerCI, nullptr, &ibltextures.irradianceCube.sampler))
ibltextures.irradianceCube.descriptor.imageView = ibltextures.irradianceCube.view;
ibltextures.irradianceCube.descriptor.sampler = ibltextures.irradianceCube.sampler;
ibltextures.irradianceCube.descriptor.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
ibltextures.irradianceCube.device = vulkanDevice;
//Setup Framebuffer and so on
VkAttachmentDescription attachDescription = {};
attachDescription.format = format;
attachDescription.samples = VK_SAMPLE_COUNT_1_BIT;
attachDescription.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attachDescription.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachDescription.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachDescription.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachDescription.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attachDescription.finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
VkAttachmentReference colorReference = { 0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL };
VkSubpassDescription subpassDescription = {};
subpassDescription.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpassDescription.colorAttachmentCount = 1;
subpassDescription.pColorAttachments = &colorReference;
std::array<VkSubpassDependency, 2> dependencies;
dependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL;
dependencies[0].dstSubpass = 0;
dependencies[0].srcStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
dependencies[0].dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependencies[0].srcAccessMask = VK_ACCESS_MEMORY_READ_BIT;
dependencies[0].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
dependencies[0].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
dependencies[1].srcSubpass = 0;
dependencies[1].dstSubpass = VK_SUBPASS_EXTERNAL;
dependencies[1].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependencies[1].dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
dependencies[1].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
dependencies[1].dstAccessMask = VK_ACCESS_MEMORY_READ_BIT;
dependencies[1].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
//set up render pass
VkRenderPassCreateInfo renderPassCI = vks::initializers::renderPassCreateInfo();
renderPassCI.attachmentCount = 1;
renderPassCI.pAttachments = &attachDescription;
renderPassCI.subpassCount = 1;
renderPassCI.pSubpasses = &subpassDescription;
renderPassCI.dependencyCount = 2;
renderPassCI.pDependencies = dependencies.data();
VkRenderPass renderpass;
VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassCI, nullptr, &renderpass));
// create offscreen image
VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.extent.width = dim;
imageCreateInfo.extent.height = dim;
imageCreateInfo.extent.depth = 1;
imageCreateInfo.mipLevels = 1;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageCreateInfo.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &offscreen.image))
// allocate memory
VkMemoryAllocateInfo imageCIMemAlloc = vks::initializers::memoryAllocateInfo();
VkMemoryRequirements imageCIMemReqs;
vkGetImageMemoryRequirements(device, offscreen.image, &imageCIMemReqs);
imageCIMemAlloc.allocationSize = imageCIMemReqs.size;
imageCIMemAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(imageCIMemReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &imageCIMemAlloc, nullptr, &offscreen.memory))
VK_CHECK_RESULT(vkBindImageMemory(device, offscreen.image, offscreen.memory, 0))
// create color image view
VkImageViewCreateInfo colorImageView = vks::initializers::imageViewCreateInfo();
colorImageView.viewType = VK_IMAGE_VIEW_TYPE_2D;
colorImageView.format = format;
colorImageView.flags = 0;
colorImageView.subresourceRange = {};
colorImageView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
colorImageView.subresourceRange.baseMipLevel = 0;
colorImageView.subresourceRange.levelCount = 1;
colorImageView.subresourceRange.baseArrayLayer = 0;
colorImageView.subresourceRange.layerCount = 1;
colorImageView.image = offscreen.image;
VK_CHECK_RESULT(vkCreateImageView(device, &colorImageView, nullptr, &offscreen.view))
// set up framebuffer for offscreen image
VkFramebufferCreateInfo fbufCreateInfo = vks::initializers::framebufferCreateInfo();
fbufCreateInfo.renderPass = renderpass;
fbufCreateInfo.attachmentCount = 1;
fbufCreateInfo.pAttachments = &offscreen.view;
fbufCreateInfo.width = dim;
fbufCreateInfo.height = dim;
fbufCreateInfo.layers = 1;
VK_CHECK_RESULT(vkCreateFramebuffer(device, &fbufCreateInfo, nullptr, &offscreen.framebuffer))
VkCommandBuffer layoutCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
vks::tools::setImageLayout(
layoutCmd,
offscreen.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
vulkanDevice->flushCommandBuffer(layoutCmd, queue, true);
// create descriptor set layout
VkDescriptorSetLayout descriptorsetlayout;
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
{
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 0),
};
VkDescriptorSetLayoutCreateInfo descriptorsetlayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorsetlayoutCI, nullptr, &descriptorsetlayout));
// allocate pool
std::vector<VkDescriptorPoolSize> poolSizes = { vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1) };
VkDescriptorPoolCreateInfo descriptorPoolCI = vks::initializers::descriptorPoolCreateInfo(poolSizes, 2);
VkDescriptorPool descriptorpool;
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolCI, nullptr, &descriptorpool));
//write to poos
VkDescriptorSet descriptorset;
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorpool, &descriptorsetlayout, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorset));
VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(descriptorset, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &ibltextures.skyboxCube.descriptor);
vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr);
// push matrix
VkPipelineLayout pipelinelayout;
std::vector<VkPushConstantRange> pushConstantRanges =
{
vks::initializers::pushConstantRange(VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, sizeof(IrradiancePushBlock), 0)
};
VkPipelineLayoutCreateInfo pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(&descriptorsetlayout, 1);
pipelineLayoutCI.pushConstantRangeCount = 1;
pipelineLayoutCI.pPushConstantRanges = pushConstantRanges.data();
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelinelayout));
//Pipeline Setting
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_FALSE, VK_FALSE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1);
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT);
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
const std::vector<VkVertexInputBindingDescription> vertexInputBindings =
{
vks::initializers::vertexInputBindingDescription(0, sizeof(VulkanglTFModel::Vertex), VK_VERTEX_INPUT_RATE_VERTEX),
};
const std::vector<VkVertexInputAttributeDescription> vertexInputAttributes = {
vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, pos)), // Location 0: Position
};
VkPipelineVertexInputStateCreateInfo vertexInputStateCI = vks::initializers::pipelineVertexInputStateCreateInfo();
vertexInputStateCI.vertexBindingDescriptionCount = static_cast<uint32_t>(vertexInputBindings.size());
vertexInputStateCI.pVertexBindingDescriptions = vertexInputBindings.data();
vertexInputStateCI.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertexInputAttributes.size());
vertexInputStateCI.pVertexAttributeDescriptions = vertexInputAttributes.data();
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelinelayout, renderpass);
pipelineCI.pInputAssemblyState = &inputAssemblyState;
pipelineCI.pRasterizationState = &rasterizationState;
pipelineCI.pColorBlendState = &colorBlendState;
pipelineCI.pMultisampleState = &multisampleState;
pipelineCI.pViewportState = &viewportState;
pipelineCI.pDepthStencilState = &depthStencilState;
pipelineCI.pDynamicState = &dynamicState;
pipelineCI.stageCount = 2;
pipelineCI.pStages = shaderStages.data();
pipelineCI.renderPass = renderpass;
pipelineCI.pVertexInputState = &vertexInputStateCI;
shaderStages[0] = loadShader(getHomeworkShadersPath() + "homework1/filtercube.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getHomeworkShadersPath() + "homework1/irradiancecube.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VkPipeline pipeline;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipeline));
// offscreen Render pass begin
VkClearValue clearValues[1];
clearValues[0].color = { { 0.0f, 0.0f, 0.2f, 0.0f } };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderpass;
renderPassBeginInfo.framebuffer = offscreen.framebuffer;
renderPassBeginInfo.renderArea.extent.width = dim;
renderPassBeginInfo.renderArea.extent.height = dim;
renderPassBeginInfo.clearValueCount = 1;
renderPassBeginInfo.pClearValues = clearValues;
//six face in cube map
std::vector<glm::mat4> matrices = {
// POSITIVE_X
glm::rotate(glm::rotate(glm::mat4(1.0f), glm::radians(90.0f), glm::vec3(0.0f, 1.0f, 0.0f)), glm::radians(180.0f), glm::vec3(1.0f, 0.0f, 0.0f)),
// NEGATIVE_X
glm::rotate(glm::rotate(glm::mat4(1.0f), glm::radians(-90.0f), glm::vec3(0.0f, 1.0f, 0.0f)), glm::radians(180.0f), glm::vec3(1.0f, 0.0f, 0.0f)),
// POSITIVE_Y
glm::rotate(glm::mat4(1.0f), glm::radians(-90.0f), glm::vec3(1.0f, 0.0f, 0.0f)),
// NEGATIVE_Y
glm::rotate(glm::mat4(1.0f), glm::radians(90.0f), glm::vec3(1.0f, 0.0f, 0.0f)),
// POSITIVE_Z
glm::rotate(glm::mat4(1.0f), glm::radians(180.0f), glm::vec3(1.0f, 0.0f, 0.0f)),
// NEGATIVE_Z
glm::rotate(glm::mat4(1.0f), glm::radians(180.0f), glm::vec3(0.0f, 0.0f, 1.0f)),
};
VkCommandBuffer cmdBuf = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
VkViewport viewport = vks::initializers::viewport((float)dim, (float)dim, 0.0f, 1.0f);
VkRect2D scissor = vks::initializers::rect2D(dim, dim, 0, 0);
vkCmdSetViewport(cmdBuf, 0, 1, &viewport);
vkCmdSetScissor(cmdBuf, 0, 1, &scissor);
VkImageSubresourceRange subresourceRange = {};
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subresourceRange.baseMipLevel = 0;
subresourceRange.levelCount = numMips;
subresourceRange.layerCount = 6;
vks::tools::setImageLayout(
cmdBuf,
ibltextures.irradianceCube.image,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
subresourceRange);
for (uint32_t m = 0; m < numMips; ++m)
{
for (uint32_t f = 0; f < 6; ++f)
{
viewport.width = static_cast<float>(dim * std::pow(0.5f, m));
viewport.height = static_cast<float>(dim * std::pow(0.5f, m));
vkCmdSetViewport(cmdBuf, 0, 1, &viewport);
// Render scene from cube face's point of view
vkCmdBeginRenderPass(cmdBuf, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
irradinacePushBlock.mvp = glm::perspective((float)(M_PI / 2.0), 1.0f, 0.1f, 512.0f) * matrices[f];
vkCmdPushConstants(cmdBuf, pipelinelayout, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0, sizeof(IrradiancePushBlock), &irradinacePushBlock);
vkCmdBindPipeline(cmdBuf, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
vkCmdBindDescriptorSets(cmdBuf, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelinelayout, 0, 1, &descriptorset, 0, NULL);
skyboxModel.draw(cmdBuf, pipelinelayout);
vkCmdEndRenderPass(cmdBuf);
vks::tools::setImageLayout(
cmdBuf,
offscreen.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
VkImageCopy copyRegion = {};
copyRegion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copyRegion.srcSubresource.layerCount = 1;
copyRegion.srcSubresource.mipLevel = 0;
copyRegion.srcSubresource.baseArrayLayer = 0;
copyRegion.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copyRegion.dstSubresource.layerCount = 1;
copyRegion.dstSubresource.mipLevel = m;
copyRegion.dstSubresource.baseArrayLayer = f;
copyRegion.extent.width = static_cast<uint32_t>(viewport.width);
copyRegion.extent.height = static_cast<uint32_t>(viewport.height);
copyRegion.extent.depth = 1;
vkCmdCopyImage(
cmdBuf,
offscreen.image,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
ibltextures.irradianceCube.image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1,
&copyRegion);
vks::tools::setImageLayout(cmdBuf,
offscreen.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL
);
}
}
vks::tools::setImageLayout(cmdBuf,
ibltextures.irradianceCube.image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
subresourceRange);
vulkanDevice->flushCommandBuffer(cmdBuf, queue);
vkDestroyRenderPass(device, renderpass, nullptr);
vkDestroyFramebuffer(device, offscreen.framebuffer, nullptr);
vkFreeMemory(device, offscreen.memory, nullptr);
vkDestroyImageView(device, offscreen.view, nullptr);
vkDestroyImage(device, offscreen.image, nullptr);
vkDestroyDescriptorPool(device, descriptorpool, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorsetlayout, nullptr);
vkDestroyPipeline(device, pipeline, nullptr);
vkDestroyPipelineLayout(device, pipelinelayout, nullptr);
auto tEnd = std::chrono::high_resolution_clock::now();
auto tDiff = std::chrono::duration<double, std::milli>(tEnd - tStart).count();
std::cout << "Generating irradiance cube with " << numMips << " mip levels took " << tDiff << " ms" << std::endl;
}
void VulkanExample::generatePrefilteredCubemap()
{
auto tStart = std::chrono::high_resolution_clock::now();
constexpr VkFormat format = VK_FORMAT_R32G32B32A32_SFLOAT;
constexpr int32_t dim = 512;
const uint32_t numMips = static_cast<uint32_t>(floor(log2(dim))) + 1;
VkImageCreateInfo imageCI = vks::initializers::imageCreateInfo();
imageCI.imageType = VK_IMAGE_TYPE_2D;
imageCI.format = format;
imageCI.extent.width = dim;
imageCI.extent.height = dim;
imageCI.extent.depth = 1;
imageCI.mipLevels = numMips;
imageCI.arrayLayers = 6;
imageCI.samples = VK_SAMPLE_COUNT_1_BIT;
imageCI.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCI.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
imageCI.flags = VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
VK_CHECK_RESULT(vkCreateImage(device, &imageCI, nullptr, &ibltextures.prefilteredCube.image));
VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
vkGetImageMemoryRequirements(device, ibltextures.prefilteredCube.image, &memReqs);
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &ibltextures.prefilteredCube.deviceMemory));
VK_CHECK_RESULT(vkBindImageMemory(device, ibltextures.prefilteredCube.image, ibltextures.prefilteredCube.deviceMemory, 0));
// Image view
VkImageViewCreateInfo viewCI = vks::initializers::imageViewCreateInfo();
viewCI.viewType = VK_IMAGE_VIEW_TYPE_CUBE;
viewCI.format = format;
viewCI.subresourceRange = {};
viewCI.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
viewCI.subresourceRange.levelCount = numMips;
viewCI.subresourceRange.layerCount = 6;
viewCI.image = ibltextures.prefilteredCube.image;
VK_CHECK_RESULT(vkCreateImageView(device, &viewCI, nullptr, &ibltextures.prefilteredCube.view));
// Sampler
VkSamplerCreateInfo samplerCI = vks::initializers::samplerCreateInfo();
samplerCI.magFilter = VK_FILTER_LINEAR;
samplerCI.minFilter = VK_FILTER_LINEAR;
samplerCI.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
samplerCI.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samplerCI.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samplerCI.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samplerCI.minLod = 0.0f;
samplerCI.maxLod = static_cast<float>(numMips);
samplerCI.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
VK_CHECK_RESULT(vkCreateSampler(device, &samplerCI, nullptr, &ibltextures.prefilteredCube.sampler));
ibltextures.prefilteredCube.descriptor.imageView = ibltextures.prefilteredCube.view;
ibltextures.prefilteredCube.descriptor.sampler = ibltextures.prefilteredCube.sampler;
ibltextures.prefilteredCube.descriptor.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
ibltextures.prefilteredCube.device = vulkanDevice;
// FB, Att, RP, Pipe, etc.
VkAttachmentDescription attDesc = {};
// Color attachment
attDesc.format = format;
attDesc.samples = VK_SAMPLE_COUNT_1_BIT;
attDesc.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attDesc.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attDesc.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attDesc.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attDesc.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attDesc.finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
VkAttachmentReference colorReference = { 0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL };
VkSubpassDescription subpassDescription = {};
subpassDescription.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpassDescription.colorAttachmentCount = 1;
subpassDescription.pColorAttachments = &colorReference;
// Use subpass dependencies for layout transitions
std::array<VkSubpassDependency, 2> dependencies;
dependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL;
dependencies[0].dstSubpass = 0;
dependencies[0].srcStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
dependencies[0].dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependencies[0].srcAccessMask = VK_ACCESS_MEMORY_READ_BIT;
dependencies[0].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
dependencies[0].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
dependencies[1].srcSubpass = 0;
dependencies[1].dstSubpass = VK_SUBPASS_EXTERNAL;
dependencies[1].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependencies[1].dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
dependencies[1].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
dependencies[1].dstAccessMask = VK_ACCESS_MEMORY_READ_BIT;
dependencies[1].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
// Renderpass
VkRenderPassCreateInfo renderPassCI = vks::initializers::renderPassCreateInfo();
renderPassCI.attachmentCount = 1;
renderPassCI.pAttachments = &attDesc;
renderPassCI.subpassCount = 1;
renderPassCI.pSubpasses = &subpassDescription;
renderPassCI.dependencyCount = 2;
renderPassCI.pDependencies = dependencies.data();
VkRenderPass renderpass;
VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassCI, nullptr, &renderpass));
struct {
VkImage image;
VkImageView view;
VkDeviceMemory memory;
VkFramebuffer framebuffer;
} offscreen;
//framebuffer
{
// Color attachment
VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.extent.width = dim;
imageCreateInfo.extent.height = dim;
imageCreateInfo.extent.depth = 1;
imageCreateInfo.mipLevels = 1;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageCreateInfo.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &offscreen.image));
VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
vkGetImageMemoryRequirements(device, offscreen.image, &memReqs);
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &offscreen.memory));
VK_CHECK_RESULT(vkBindImageMemory(device, offscreen.image, offscreen.memory, 0));
VkImageViewCreateInfo colorImageView = vks::initializers::imageViewCreateInfo();
colorImageView.viewType = VK_IMAGE_VIEW_TYPE_2D;
colorImageView.format = format;
colorImageView.flags = 0;
colorImageView.subresourceRange = {};
colorImageView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
colorImageView.subresourceRange.baseMipLevel = 0;
colorImageView.subresourceRange.levelCount = 1;
colorImageView.subresourceRange.baseArrayLayer = 0;
colorImageView.subresourceRange.layerCount = 1;
colorImageView.image = offscreen.image;
VK_CHECK_RESULT(vkCreateImageView(device, &colorImageView, nullptr, &offscreen.view));
VkFramebufferCreateInfo fbufCreateInfo = vks::initializers::framebufferCreateInfo();
fbufCreateInfo.renderPass = renderpass;
fbufCreateInfo.attachmentCount = 1;
fbufCreateInfo.pAttachments = &offscreen.view;
fbufCreateInfo.width = dim;
fbufCreateInfo.height = dim;
fbufCreateInfo.layers = 1;
VK_CHECK_RESULT(vkCreateFramebuffer(device, &fbufCreateInfo, nullptr, &offscreen.framebuffer));
VkCommandBuffer layoutCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
vks::tools::setImageLayout(
layoutCmd,
offscreen.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
vulkanDevice->flushCommandBuffer(layoutCmd, queue, true);
}
// Descriptors
VkDescriptorSetLayout descriptorsetlayout;
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 0),
};
VkDescriptorSetLayoutCreateInfo descriptorsetlayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorsetlayoutCI, nullptr, &descriptorsetlayout));
// Descriptor Pool
std::vector<VkDescriptorPoolSize> poolSizes = { vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1) };
VkDescriptorPoolCreateInfo descriptorPoolCI = vks::initializers::descriptorPoolCreateInfo(poolSizes, 2);
VkDescriptorPool descriptorpool;
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolCI, nullptr, &descriptorpool));
VkDescriptorSet descriptorset;
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorpool, &descriptorsetlayout, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorset));
VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(descriptorset, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &ibltextures.skyboxCube.descriptor);
vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr);
std::vector<VkPushConstantRange> pushConstantRanges = {
vks::initializers::pushConstantRange(VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, sizeof(PrefilterPushBlock), 0),
};
VkPipelineLayoutCreateInfo pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(&descriptorsetlayout, 1);
pipelineLayoutCI.pushConstantRangeCount = 1;
pipelineLayoutCI.pPushConstantRanges = pushConstantRanges.data();
VkPipelineLayout pipelinelayout;
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelinelayout));
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_FALSE, VK_FALSE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1);
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT);
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
const std::vector<VkVertexInputBindingDescription> vertexInputBindings =
{
vks::initializers::vertexInputBindingDescription(0, sizeof(VulkanglTFModel::Vertex), VK_VERTEX_INPUT_RATE_VERTEX),
};
const std::vector<VkVertexInputAttributeDescription> vertexInputAttributes = {
vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, pos)), // Location 0: Position
};
VkPipelineVertexInputStateCreateInfo vertexInputStateCI = vks::initializers::pipelineVertexInputStateCreateInfo();
vertexInputStateCI.vertexBindingDescriptionCount = static_cast<uint32_t>(vertexInputBindings.size());
vertexInputStateCI.pVertexBindingDescriptions = vertexInputBindings.data();
vertexInputStateCI.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertexInputAttributes.size());
vertexInputStateCI.pVertexAttributeDescriptions = vertexInputAttributes.data();
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelinelayout, renderpass);
pipelineCI.pInputAssemblyState = &inputAssemblyState;
pipelineCI.pRasterizationState = &rasterizationState;
pipelineCI.pColorBlendState = &colorBlendState;
pipelineCI.pMultisampleState = &multisampleState;
pipelineCI.pViewportState = &viewportState;
pipelineCI.pDepthStencilState = &depthStencilState;
pipelineCI.pDynamicState = &dynamicState;
pipelineCI.stageCount = 2;
pipelineCI.pStages = shaderStages.data();
pipelineCI.renderPass = renderpass;
pipelineCI.pVertexInputState = &vertexInputStateCI;
shaderStages[0] = loadShader(getHomeworkShadersPath() + "homework1/filtercube.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getHomeworkShadersPath() + "homework1/prefilterenvmap.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VkPipeline pipeline;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipeline));
//Render & build cmd
VkClearValue clearValues[1];
clearValues[0].color = { { 0.0f, 0.0f, 0.2f, 0.0f } };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
// Reuse render pass from example pass
renderPassBeginInfo.renderPass = renderpass;
renderPassBeginInfo.framebuffer = offscreen.framebuffer;
renderPassBeginInfo.renderArea.extent.width = dim;
renderPassBeginInfo.renderArea.extent.height = dim;
renderPassBeginInfo.clearValueCount = 1;
renderPassBeginInfo.pClearValues = clearValues;
std::vector<glm::mat4> matrices = {
// POSITIVE_X
glm::rotate(glm::rotate(glm::mat4(1.0f), glm::radians(90.0f), glm::vec3(0.0f, 1.0f, 0.0f)), glm::radians(180.0f), glm::vec3(1.0f, 0.0f, 0.0f)),
// NEGATIVE_X
glm::rotate(glm::rotate(glm::mat4(1.0f), glm::radians(-90.0f), glm::vec3(0.0f, 1.0f, 0.0f)), glm::radians(180.0f), glm::vec3(1.0f, 0.0f, 0.0f)),
// POSITIVE_Y
glm::rotate(glm::mat4(1.0f), glm::radians(-90.0f), glm::vec3(1.0f, 0.0f, 0.0f)),
// NEGATIVE_Y
glm::rotate(glm::mat4(1.0f), glm::radians(90.0f), glm::vec3(1.0f, 0.0f, 0.0f)),
// POSITIVE_Z
glm::rotate(glm::mat4(1.0f), glm::radians(180.0f), glm::vec3(1.0f, 0.0f, 0.0f)),
// NEGATIVE_Z
glm::rotate(glm::mat4(1.0f), glm::radians(180.0f), glm::vec3(0.0f, 0.0f, 1.0f)),
};
VkCommandBuffer cmdBuf = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
VkViewport viewport = vks::initializers::viewport((float)dim, (float)dim, 0.0f, 1.0f);
VkRect2D scissor = vks::initializers::rect2D(dim, dim, 0, 0);
vkCmdSetViewport(cmdBuf, 0, 1, &viewport);
vkCmdSetScissor(cmdBuf, 0, 1, &scissor);
VkImageSubresourceRange subresourceRange = {};
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subresourceRange.baseMipLevel = 0;
subresourceRange.levelCount = numMips;
subresourceRange.layerCount = 6;
vks::tools::setImageLayout(
cmdBuf,
ibltextures.prefilteredCube.image,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
subresourceRange);
for (uint32_t m = 0; m < numMips; ++m)
{
//mip level according to roughness
prefilterPushBlock.roughness = float(m) / float(numMips - 1);
for (uint32_t f = 0; f < 6; ++f)
{
viewport.width = static_cast<float>(dim * std::pow(0.5f, m));
viewport.height = static_cast<float>(dim * std::pow(0.5f, m));
vkCmdSetViewport(cmdBuf, 0, 1, &viewport);
// Render scene from cube face's point of view
vkCmdBeginRenderPass(cmdBuf, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
// Update shader push constant block
prefilterPushBlock.mvp = glm::perspective((float)(M_PI / 2.0), 1.0f, 0.1f, 512.0f) * matrices[f];
vkCmdPushConstants(cmdBuf, pipelinelayout, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0, sizeof(PrefilterPushBlock), &prefilterPushBlock);
vkCmdBindPipeline(cmdBuf, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
vkCmdBindDescriptorSets(cmdBuf, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelinelayout, 0, 1, &descriptorset, 0, nullptr);
skyboxModel.draw(cmdBuf, pipelinelayout);
vkCmdEndRenderPass(cmdBuf);
vks::tools::setImageLayout(
cmdBuf,
offscreen.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
VkImageCopy copyRegion{};
copyRegion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copyRegion.srcSubresource.baseArrayLayer = 0;
copyRegion.srcSubresource.mipLevel = 0;
copyRegion.srcSubresource.layerCount = 1;
copyRegion.srcOffset = { 0, 0, 0 };
copyRegion.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copyRegion.dstSubresource.baseArrayLayer = f;
copyRegion.dstSubresource.mipLevel = m;
copyRegion.dstSubresource.layerCount = 1;
copyRegion.dstOffset = { 0, 0, 0 };
copyRegion.extent.width = static_cast<uint32_t>(viewport.width);
copyRegion.extent.height = static_cast<uint32_t>(viewport.height);
copyRegion.extent.depth = 1;
vkCmdCopyImage(
cmdBuf,
offscreen.image,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
ibltextures.prefilteredCube.image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1,
&copyRegion);
//Reset frame buffer image layout
vks::tools::setImageLayout(
cmdBuf,
offscreen.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
}
}
//Set format shader read
vks::tools::setImageLayout(
cmdBuf,
ibltextures.prefilteredCube.image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
subresourceRange);
vulkanDevice->flushCommandBuffer(cmdBuf, queue);
vkDestroyRenderPass(device, renderpass, nullptr);
vkDestroyFramebuffer(device, offscreen.framebuffer, nullptr);
vkFreeMemory(device, offscreen.memory, nullptr);
vkDestroyImageView(device, offscreen.view, nullptr);
vkDestroyImage(device, offscreen.image, nullptr);
vkDestroyDescriptorPool(device, descriptorpool, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorsetlayout, nullptr);
vkDestroyPipeline(device, pipeline, nullptr);
vkDestroyPipelineLayout(device, pipelinelayout, nullptr);
auto tEnd = std::chrono::high_resolution_clock::now();
auto tDiff = std::chrono::duration<double, std::milli>(tEnd - tStart).count();
std::cout << "Generating pre-filtered enivornment cube with " << numMips << " mip levels took " << tDiff << " ms" << std::endl;
}
void VulkanExample::generateBRDFLUT()
{
auto tStart = std::chrono::high_resolution_clock::now();
constexpr VkFormat format = VK_FORMAT_R16G16_SFLOAT;
constexpr int32_t dim = 512;
// Image
VkImageCreateInfo imageCI = vks::initializers::imageCreateInfo();
imageCI.imageType = VK_IMAGE_TYPE_2D;
imageCI.format = format;
imageCI.extent.width = dim;
imageCI.extent.height = dim;
imageCI.extent.depth = 1;
imageCI.mipLevels = 1;
imageCI.arrayLayers = 1;
imageCI.samples = VK_SAMPLE_COUNT_1_BIT;
imageCI.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCI.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
VK_CHECK_RESULT(vkCreateImage(device, &imageCI, nullptr, &ibltextures.lutBrdf.image));
VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
vkGetImageMemoryRequirements(device, ibltextures.lutBrdf.image, &memReqs);
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &ibltextures.lutBrdf.deviceMemory));
VK_CHECK_RESULT(vkBindImageMemory(device, ibltextures.lutBrdf.image, ibltextures.lutBrdf.deviceMemory, 0));
// Image view
VkImageViewCreateInfo viewCI = vks::initializers::imageViewCreateInfo();
viewCI.viewType = VK_IMAGE_VIEW_TYPE_2D;
viewCI.format = format;
viewCI.subresourceRange = {};
viewCI.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
viewCI.subresourceRange.levelCount = 1;
viewCI.subresourceRange.layerCount = 1;
viewCI.image = ibltextures.lutBrdf.image;
VK_CHECK_RESULT(vkCreateImageView(device, &viewCI, nullptr, &ibltextures.lutBrdf.view));
// Sampler
VkSamplerCreateInfo samplerCI = vks::initializers::samplerCreateInfo();
samplerCI.magFilter = VK_FILTER_LINEAR;
samplerCI.minFilter = VK_FILTER_LINEAR;
samplerCI.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
samplerCI.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samplerCI.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samplerCI.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samplerCI.minLod = 0.0f;
samplerCI.maxLod = 1.0f;
samplerCI.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
VK_CHECK_RESULT(vkCreateSampler(device, &samplerCI, nullptr, &ibltextures.lutBrdf.sampler));
ibltextures.lutBrdf.descriptor.imageView = ibltextures.lutBrdf.view;
ibltextures.lutBrdf.descriptor.sampler = ibltextures.lutBrdf.sampler;
ibltextures.lutBrdf.descriptor.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
ibltextures.lutBrdf.device = vulkanDevice;
// FB, Att, RP, Pipe, etc.
VkAttachmentDescription attDesc = {};
// Color attachment
attDesc.format = format;
attDesc.samples = VK_SAMPLE_COUNT_1_BIT;
attDesc.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attDesc.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attDesc.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attDesc.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attDesc.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attDesc.finalLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
VkAttachmentReference colorReference = { 0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL };
VkSubpassDescription subpassDescription = {};
subpassDescription.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpassDescription.colorAttachmentCount = 1;
subpassDescription.pColorAttachments = &colorReference;
// Use subpass dependencies for layout transitions
std::array<VkSubpassDependency, 2> dependencies;
dependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL;
dependencies[0].dstSubpass = 0;
dependencies[0].srcStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
dependencies[0].dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependencies[0].srcAccessMask = VK_ACCESS_MEMORY_READ_BIT;
dependencies[0].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
dependencies[0].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
dependencies[1].srcSubpass = 0;
dependencies[1].dstSubpass = VK_SUBPASS_EXTERNAL;
dependencies[1].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependencies[1].dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
dependencies[1].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
dependencies[1].dstAccessMask = VK_ACCESS_MEMORY_READ_BIT;
dependencies[1].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
// Create the actual renderpass
VkRenderPassCreateInfo renderPassCI = vks::initializers::renderPassCreateInfo();
renderPassCI.attachmentCount = 1;
renderPassCI.pAttachments = &attDesc;
renderPassCI.subpassCount = 1;
renderPassCI.pSubpasses = &subpassDescription;
renderPassCI.dependencyCount = 2;
renderPassCI.pDependencies = dependencies.data();
VkRenderPass renderpass;
VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassCI, nullptr, &renderpass));
VkFramebufferCreateInfo framebufferCI = vks::initializers::framebufferCreateInfo();
framebufferCI.renderPass = renderpass;
framebufferCI.attachmentCount = 1;
framebufferCI.pAttachments = &ibltextures.lutBrdf.view;
framebufferCI.width = dim;
framebufferCI.height = dim;
framebufferCI.layers = 1;
VkFramebuffer framebuffer;
VK_CHECK_RESULT(vkCreateFramebuffer(device, &framebufferCI, nullptr, &framebuffer));
// Descriptors
VkDescriptorSetLayout descriptorsetlayout;
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {};
VkDescriptorSetLayoutCreateInfo descriptorsetlayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorsetlayoutCI, nullptr, &descriptorsetlayout));
// Descriptor Pool
std::vector<VkDescriptorPoolSize> poolSizes = { vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1) };
VkDescriptorPoolCreateInfo descriptorPoolCI = vks::initializers::descriptorPoolCreateInfo(poolSizes, 2);
VkDescriptorPool descriptorpool;
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolCI, nullptr, &descriptorpool));
// Descriptor sets
VkDescriptorSet descriptorset;
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorpool, &descriptorsetlayout, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorset));
// Pipeline layout
VkPipelineLayout pipelinelayout;
VkPipelineLayoutCreateInfo pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(&descriptorsetlayout, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelinelayout));
// Pipeline
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_FALSE, VK_FALSE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1);
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT);
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
VkPipelineVertexInputStateCreateInfo emptyInputState = vks::initializers::pipelineVertexInputStateCreateInfo();
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelinelayout, renderpass);
pipelineCI.pInputAssemblyState = &inputAssemblyState;
pipelineCI.pRasterizationState = &rasterizationState;
pipelineCI.pColorBlendState = &colorBlendState;
pipelineCI.pMultisampleState = &multisampleState;
pipelineCI.pViewportState = &viewportState;
pipelineCI.pDepthStencilState = &depthStencilState;
pipelineCI.pDynamicState = &dynamicState;
pipelineCI.stageCount = 2;
pipelineCI.pStages = shaderStages.data();
pipelineCI.pVertexInputState = &emptyInputState;
// Look-up-table (from BRDF) pipeline
shaderStages[0] = loadShader(getHomeworkShadersPath() + "homework1/genbrdflut.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getHomeworkShadersPath() + "homework1/genbrdflut.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VkPipeline pipeline;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipeline));
// Render
VkClearValue clearValues[1];
clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 1.0f } };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderpass;
renderPassBeginInfo.renderArea.extent.width = dim;
renderPassBeginInfo.renderArea.extent.height = dim;
renderPassBeginInfo.clearValueCount = 1;
renderPassBeginInfo.pClearValues = clearValues;
renderPassBeginInfo.framebuffer = framebuffer;
VkCommandBuffer cmdBuf = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
vkCmdBeginRenderPass(cmdBuf, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport((float)dim, (float)dim, 0.0f, 1.0f);
VkRect2D scissor = vks::initializers::rect2D(dim, dim, 0, 0);
vkCmdSetViewport(cmdBuf, 0, 1, &viewport);
vkCmdSetScissor(cmdBuf, 0, 1, &scissor);
vkCmdBindPipeline(cmdBuf, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
vkCmdDraw(cmdBuf, 3, 1, 0, 0);
vkCmdEndRenderPass(cmdBuf);
vulkanDevice->flushCommandBuffer(cmdBuf, queue);
vkQueueWaitIdle(queue);
vkDestroyPipeline(device, pipeline, nullptr);
vkDestroyPipelineLayout(device, pipelinelayout, nullptr);
vkDestroyRenderPass(device, renderpass, nullptr);
vkDestroyFramebuffer(device, framebuffer, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorsetlayout, nullptr);
vkDestroyDescriptorPool(device, descriptorpool, nullptr);
auto tEnd = std::chrono::high_resolution_clock::now();
auto tDiff = std::chrono::duration<double, std::milli>(tEnd - tStart).count();
std::cout << "Generating BRDF LUT took " << tDiff << " ms" << std::endl;
}
//-------------------------- pbr precompute start ----------------------------------
#pragma region pbr render pass setting
@ -1326,6 +2272,9 @@ void VulkanExample::getEnabledFeatures()
{
VulkanExampleBase::prepare();
loadAssets();
generateBRDFLUT();
generateIrradianceCubemap();
generatePrefilteredCubemap();
prepareUniformBuffers();
setupDescriptors();
preparePipelines();

View File

@ -249,6 +249,11 @@ public:
vks::Buffer skinSSBO;
} shaderData;
struct StagingBuffer {
VkBuffer buffer;
VkDeviceMemory memory;
} vertexStaging, indexStaging;
struct Pipelines {
VkPipeline solid;
VkPipeline wireframe = VK_NULL_HANDLE;
@ -325,6 +330,28 @@ public:
vks::Texture2D lutBrdf;
} ibltextures;
struct OffScreen
{
VkImage image;
VkImageView view;
VkDeviceMemory memory;
VkFramebuffer framebuffer;
} offscreen;
struct IrradiancePushBlock
{
glm::mat4 mvp;
// Sampling deltas
float deltaPhi = (2.0f * float(M_PI)) / 180.0f;
float deltaTheta = (0.5f * float(M_PI)) / 64.0f;
} irradinacePushBlock;
struct PrefilterPushBlock {
glm::mat4 mvp;
float roughness;
uint32_t numSamples = 32u;
} prefilterPushBlock;
VulkanglTFModel skyboxModel;
VulkanExample();
@ -356,7 +383,7 @@ public:
shaderData.buffer.destroy();
shaderData.skinSSBO.destroy();
}
void loadglTFFile(std::string filename);
void loadglTFFile(std::string filename, VulkanglTFModel& model, bool bSkyboxFlag = false);
virtual void getEnabledFeatures();
void createAttachment(VkFormat format, VkImageUsageFlagBits usage, FrameBufferAttachment* attachment, uint32_t width, uint32_t height);
virtual void setupFrameBuffer();
@ -365,6 +392,9 @@ public:
void setupDescriptors();
void preparePipelines();
void prepareToneMappingPipeline();
void generateIrradianceCubemap();
void generatePrefilteredCubemap();
void generateBRDFLUT();
void prepareUniformBuffers();
void updateUniformBuffers();
void prepare();