diff --git a/.gitignore b/.gitignore index 962abe5..9707080 100644 --- a/.gitignore +++ b/.gitignore @@ -38,3 +38,4 @@ data/ out/ .vs/ vulkan_asset_pack_gltf.zip +*.zip diff --git a/CMakeLists.txt b/CMakeLists.txt index f78ddd2..751a347 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -149,4 +149,5 @@ set(CMAKE_RUNTIME_OUTPUT_DIRECTORY "${CMAKE_BINARY_DIR}/bin/") add_subdirectory(base) add_subdirectory(homework) + # add_subdirectory(examples) diff --git a/CMakeSettings.json b/CMakeSettings.json new file mode 100644 index 0000000..c9b700d --- /dev/null +++ b/CMakeSettings.json @@ -0,0 +1,38 @@ +{ + "configurations": [ + { + "name": "x64-Debug", + "generator": "Ninja", + "configurationType": "Debug", + "inheritEnvironments": [ "msvc_x64_x64" ], + "buildRoot": "${projectDir}\\out\\build\\${name}", + "installRoot": "${projectDir}\\out\\install\\${name}", + "cmakeCommandArgs": "", + "buildCommandArgs": "", + "ctestCommandArgs": "" + }, + { + "name": "x64-Clang-Debug", + "generator": "Ninja", + "configurationType": "Debug", + "buildRoot": "${projectDir}\\out\\build\\${name}", + "installRoot": "${projectDir}\\out\\install\\${name}", + "cmakeCommandArgs": "", + "buildCommandArgs": "", + "ctestCommandArgs": "", + "inheritEnvironments": [ "clang_cl_x64_x64" ] + }, + { + "name": "x64-Clang-Release", + "generator": "Ninja", + "configurationType": "RelWithDebInfo", + "buildRoot": "${projectDir}\\out\\build\\${name}", + "installRoot": "${projectDir}\\out\\install\\${name}", + "cmakeCommandArgs": "", + "buildCommandArgs": "", + "ctestCommandArgs": "", + "inheritEnvironments": [ "clang_cl_x64_x64" ], + "variables": [] + } + ] +} \ No newline at end of file diff --git a/homework/homework1/homework1.cpp b/homework/homework1/homework1.cpp index 33f9e19..8848fe9 100644 --- a/homework/homework1/homework1.cpp +++ b/homework/homework1/homework1.cpp @@ -16,123 +16,7 @@ * * If you are looking for a complete glTF implementation, check out https://github.com/SaschaWillems/Vulkan-glTF-PBR/ */ - -#define TINYGLTF_IMPLEMENTATION -#define STB_IMAGE_IMPLEMENTATION -#define TINYGLTF_NO_STB_IMAGE_WRITE -#ifdef VK_USE_PLATFORM_ANDROID_KHR -#define TINYGLTF_ANDROID_LOAD_FROM_ASSETS -#endif -#include "tiny_gltf.h" - -#include "vulkanexamplebase.h" - -#define ENABLE_VALIDATION false - -// Contains everything required to render a glTF model in Vulkan -// This class is heavily simplified (compared to glTF's feature set) but retains the basic glTF structure -class VulkanglTFModel -{ -public: - // The class requires some Vulkan objects so it can create it's own resources - vks::VulkanDevice* vulkanDevice; - VkQueue copyQueue; - - // The vertex layout for the samples' model - struct Vertex { - glm::vec3 pos; - glm::vec3 normal; - glm::vec2 uv; - glm::vec3 color; - }; - - // Single vertex buffer for all primitives - struct { - VkBuffer buffer; - VkDeviceMemory memory; - } vertices; - - // Single index buffer for all primitives - struct { - int count; - VkBuffer buffer; - VkDeviceMemory memory; - } indices; - - // The following structures roughly represent the glTF scene structure - // To keep things simple, they only contain those properties that are required for this sample - struct Node; - - // A primitive contains the data for a single draw call - struct Primitive { - uint32_t firstIndex; - uint32_t indexCount; - int32_t materialIndex; - }; - - // Contains the node's (optional) geometry and can be made up of an arbitrary number of primitives - struct Mesh { - std::vector primitives; - }; - - // A node represents an object in the glTF scene graph - struct Node { - Node* parent; - std::vector children; - Mesh mesh; - glm::mat4 matrix; - ~Node() { - for (auto& child : children) { - delete child; - } - } - }; - - // A glTF material stores information in e.g. the texture that is attached to it and colors - struct Material { - glm::vec4 baseColorFactor = glm::vec4(1.0f); - uint32_t baseColorTextureIndex; - }; - - // Contains the texture for a single glTF image - // Images may be reused by texture objects and are as such separated - struct Image { - vks::Texture2D texture; - // We also store (and create) a descriptor set that's used to access this texture from the fragment shader - VkDescriptorSet descriptorSet; - }; - - // A glTF texture stores a reference to the image and a sampler - // In this sample, we are only interested in the image - struct Texture { - int32_t imageIndex; - }; - - /* - Model data - */ - std::vector images; - std::vector textures; - std::vector materials; - std::vector nodes; - - ~VulkanglTFModel() - { - for (auto node : nodes) { - delete node; - } - // Release all Vulkan resources allocated for the model - vkDestroyBuffer(vulkanDevice->logicalDevice, vertices.buffer, nullptr); - vkFreeMemory(vulkanDevice->logicalDevice, vertices.memory, nullptr); - vkDestroyBuffer(vulkanDevice->logicalDevice, indices.buffer, nullptr); - vkFreeMemory(vulkanDevice->logicalDevice, indices.memory, nullptr); - for (Image image : images) { - vkDestroyImageView(vulkanDevice->logicalDevice, image.texture.view, nullptr); - vkDestroyImage(vulkanDevice->logicalDevice, image.texture.image, nullptr); - vkDestroySampler(vulkanDevice->logicalDevice, image.texture.sampler, nullptr); - vkFreeMemory(vulkanDevice->logicalDevice, image.texture.deviceMemory, nullptr); - } - } +#include "homework1.h" /* glTF loading functions @@ -184,7 +68,96 @@ public: } } - void loadMaterials(tinygltf::Model& input) + void VulkanglTFModel::loadAnimations(tinygltf::Model& input) + { + animations.resize(input.animations.size()); + + for (size_t i = 0; i < input.animations.size(); ++i) + { + auto glTFAnimation = input.animations[i]; + animations[i].name = glTFAnimation.name; + + //Samplers + animations[i].samplers.resize(glTFAnimation.samplers.size()); + for (size_t j = 0; j < glTFAnimation.samplers.size(); ++j) + { + auto glTFSampler = glTFAnimation.samplers[j]; + auto& dstSampler = animations[i].samplers[j]; + dstSampler.interpolation = glTFSampler.interpolation; + + // Read sampler keyframe input time values + { + const auto& accessor = input.accessors[glTFSampler.input]; + const auto& bufferView = input.bufferViews[accessor.bufferView]; + const auto& buffer = input.buffers[bufferView.buffer]; + const void* dataPtr = &buffer.data[accessor.byteOffset + bufferView.byteOffset]; + const float* buf = static_cast(dataPtr); + for (size_t index = 0; index < accessor.count; ++index) + { + dstSampler.inputs.push_back(buf[index]); + } + // Adjust animation's start and end times + for (auto input : animations[i].samplers[j].inputs) + { + if (input < animations[i].start) + { + animations[i].start = input; + }; + if (input > animations[i].end) + { + animations[i].end = input; + } + } + } + + // Read sampler keyframe output translate/rotate/scale values + { + const auto& accessor = input.accessors[glTFSampler.output]; + const auto& bufferView = input.bufferViews[accessor.bufferView]; + const auto& buffer = input.buffers[bufferView.buffer]; + const void* dataPtr = &buffer.data[accessor.byteOffset + bufferView.byteOffset]; + switch (accessor.type) + { + case TINYGLTF_TYPE_VEC3: + { + const glm::vec3* buf = static_cast(dataPtr); + for (size_t index = 0; index < accessor.count; index++) + { + dstSampler.outputsVec4.push_back(glm::vec4(buf[index], 0.0f)); + } + break; + } + case TINYGLTF_TYPE_VEC4: + { + const glm::vec4* buf = static_cast(dataPtr); + for (size_t index = 0; index < accessor.count; index++) + { + dstSampler.outputsVec4.push_back(buf[index]); + } + break; + } + default: + { + std::cout << "unknown type" << std::endl; + break; + } + } + } + } + + animations[i].channels.resize(glTFAnimation.channels.size()); + for (size_t j = 0; j < glTFAnimation.channels.size(); ++j) + { + auto glTFChannel = glTFAnimation.channels[j]; + auto& dstChannel = animations[i].channels[j]; + dstChannel.path = glTFChannel.target_path; + dstChannel.samplerIndex = glTFChannel.sampler; + dstChannel.node = nodeFromIndex(glTFChannel.target_node); + } + } + } + + void VulkanglTFModel::loadMaterials(tinygltf::Model& input) { materials.resize(input.materials.size()); for (size_t i = 0; i < input.materials.size(); i++) { @@ -198,14 +171,35 @@ public: if (glTFMaterial.values.find("baseColorTexture") != glTFMaterial.values.end()) { materials[i].baseColorTextureIndex = glTFMaterial.values["baseColorTexture"].TextureIndex(); } + if (glTFMaterial.values.find("metallicRoughnessTexture") != glTFMaterial.values.end()) { + materials[i].matalicRoughTextureIndex = glTFMaterial.values["metallicRoughnessTexture"].TextureIndex(); + } + if (glTFMaterial.additionalValues.find("normalTexture") != glTFMaterial.additionalValues.end()) + { + materials[i].normalMapTextureIndex = glTFMaterial.additionalValues["normalTexture"].TextureIndex(); + } + if (glTFMaterial.emissiveTexture.index != -1) + { + materials[i].emissiveTextureIndex = glTFMaterial.emissiveTexture.index; + } + if (glTFMaterial.emissiveFactor.size() == 3) + { + materials[i].materialData.values.emissiveFactor = glm::make_vec3(glTFMaterial.emissiveFactor.data()); + } + + if (glTFMaterial.values.find("baseColorFactor") != glTFMaterial.values.end()) + { + materials[i].materialData.values.baseColorFactor = glm::make_vec4(glTFMaterial.values["baseColorFactor"].ColorFactor().data()); + } } } - void loadNode(const tinygltf::Node& inputNode, const tinygltf::Model& input, VulkanglTFModel::Node* parent, std::vector& indexBuffer, std::vector& vertexBuffer) + void VulkanglTFModel::loadNode(const tinygltf::Node& inputNode, const tinygltf::Model& input, VulkanglTFModel::Node* parent, uint32_t nodeIndex,std::vector& indexBuffer, std::vector& vertexBuffer) { VulkanglTFModel::Node* node = new VulkanglTFModel::Node{}; node->matrix = glm::mat4(1.0f); node->parent = parent; + node->index = nodeIndex; // Get the local node matrix // It's either made up from translation, rotation, scale or a 4x4 matrix @@ -226,7 +220,7 @@ public: // Load node's children if (inputNode.children.size() > 0) { for (size_t i = 0; i < inputNode.children.size(); i++) { - loadNode(input.nodes[inputNode.children[i]], input , node, indexBuffer, vertexBuffer); + loadNode(input.nodes[inputNode.children[i]], input , node, inputNode.children[i],indexBuffer, vertexBuffer); } } @@ -245,6 +239,7 @@ public: const float* positionBuffer = nullptr; const float* normalsBuffer = nullptr; const float* texCoordsBuffer = nullptr; + const float* tangentsBuffer = nullptr; size_t vertexCount = 0; // Get buffer data for vertex positions @@ -268,13 +263,21 @@ public: texCoordsBuffer = reinterpret_cast(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset])); } + if (glTFPrimitive.attributes.find("TANGENT") != glTFPrimitive.attributes.end()) + { + const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.attributes.find("TANGENT")->second]; + const tinygltf::BufferView& view = input.bufferViews[accessor.bufferView]; + tangentsBuffer = reinterpret_cast(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset])); + } + // Append data to model's vertex buffer for (size_t v = 0; v < vertexCount; v++) { Vertex vert{}; vert.pos = glm::vec4(glm::make_vec3(&positionBuffer[v * 3]), 1.0f); vert.normal = glm::normalize(glm::vec3(normalsBuffer ? glm::make_vec3(&normalsBuffer[v * 3]) : glm::vec3(0.0f))); vert.uv = texCoordsBuffer ? glm::make_vec2(&texCoordsBuffer[v * 2]) : glm::vec3(0.0f); - vert.color = glm::vec3(1.0f); + vert.tangent = tangentsBuffer ? glm::normalize(glm::make_vec3(&tangentsBuffer[v * 4])) : glm::vec3(0.0f); + vert.color = glm::vec3(1.0f, 1.0f, nodeIndex);//Temp set index in color attribute vertexBuffer.push_back(vert); } } @@ -330,12 +333,126 @@ public: } } + VulkanglTFModel::Node* VulkanglTFModel::findNode(Node* parent, uint32_t index) + { + Node* nodeFound = nullptr; + if (parent->index == index) + { + return parent; + } + for (auto& child : parent->children) + { + nodeFound = findNode(child, index); + if (nodeFound) + { + break; + } + } + return nodeFound; + } + + VulkanglTFModel::Node* VulkanglTFModel::nodeFromIndex(uint32_t index) + { + Node* nodeFound = nullptr; + for (auto& node : nodes) + { + nodeFound = findNode(node, index); + if (nodeFound) + { + break; + } + } + return nodeFound; + } + + void VulkanglTFModel::updateAnimation(float deltaTime, vks::Buffer& buffer) + { + constexpr uint32_t activeAnimation = 0; + Animation& animation = animations[activeAnimation]; + animation.currentTime += deltaTime; + if (animation.currentTime > animation.end) + { + animation.currentTime -= animation.end; + } + + for (auto& channel : animation.channels) + { + auto& sampler = animation.samplers[channel.samplerIndex]; + for (size_t i = 0; i < sampler.inputs.size() - 1; ++i) + { + if (sampler.interpolation != "LINEAR") + { + std::cout << "This sample only supports linear interpolations\n"; + continue; + } + if ((animation.currentTime >= sampler.inputs[i]) && (animation.currentTime <= sampler.inputs[i + 1])) + { + float ratio = (animation.currentTime - sampler.inputs[i]) / (sampler.inputs[i + 1] - sampler.inputs[i]); + if (channel.path == "translation") + { + channel.node->translation = glm::mix(sampler.outputsVec4[i], sampler.outputsVec4[i + 1], ratio); + channel.node->bAnimateNode = true; + } + if (channel.path == "rotation") + { + glm::quat q1; + q1.x = sampler.outputsVec4[i].x; + q1.y = sampler.outputsVec4[i].y; + q1.z = sampler.outputsVec4[i].z; + q1.w = sampler.outputsVec4[i].w; + + glm::quat q2; + q2.x = sampler.outputsVec4[i + 1].x; + q2.y = sampler.outputsVec4[i + 1].y; + q2.z = sampler.outputsVec4[i + 1].z; + q2.w = sampler.outputsVec4[i + 1].w; + + channel.node->rotation = glm::normalize(glm::slerp(q1, q2, ratio)); + channel.node->bAnimateNode = true; + } + if (channel.path == "scale") + { + channel.node->scale = glm::mix(sampler.outputsVec4[i], sampler.outputsVec4[i + 1], ratio); + channel.node->bAnimateNode = true; + } + } + } + } + std::vector nodeMatrics(nodeCount); + for (auto& node : nodes) + { + updateNodeMatrix(node, nodeMatrics); + } + buffer.copyTo(nodeMatrics.data(), nodeCount * sizeof(glm::mat4)); + } + + void VulkanglTFModel::updateNodeMatrix(Node* node, std::vector& nodeMatrics) + { + nodeMatrics[node->index] = getNodeMatrix(node); + for (auto& child : node->children) + { + updateNodeMatrix(child, nodeMatrics); + } + } + + glm::mat4 VulkanglTFModel::getNodeMatrix(Node* node) + { + glm::mat4 nodeMatrix = node->getLocalMatrix(); + Node* currentParent = node->parent; + while (currentParent) + { + nodeMatrix = currentParent->getLocalMatrix() * nodeMatrix; + currentParent = currentParent->parent; + } + return nodeMatrix; + } + /* glTF rendering functions */ // Draw a single node including child nodes (if present) - void drawNode(VkCommandBuffer commandBuffer, VkPipelineLayout pipelineLayout, VulkanglTFModel::Node* node) + void VulkanglTFModel::drawNode(VkCommandBuffer commandBuffer, VkPipelineLayout pipelineLayout, VulkanglTFModel::Node* node, bool bPushConstants) { if (node->mesh.primitives.size() > 0) { // Pass the node's matrix via push constants @@ -346,25 +463,39 @@ public: nodeMatrix = currentParent->matrix * nodeMatrix; currentParent = currentParent->parent; } - // Pass the final matrix to the vertex shader using push constants - vkCmdPushConstants(commandBuffer, pipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(glm::mat4), &nodeMatrix); + for (VulkanglTFModel::Primitive& primitive : node->mesh.primitives) { if (primitive.indexCount > 0) { // Get the texture index for this primitive - VulkanglTFModel::Texture texture = textures[materials[primitive.materialIndex].baseColorTextureIndex]; - // Bind the descriptor for the current primitive's texture - vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 1, 1, &images[texture.imageIndex].descriptorSet, 0, nullptr); + if (textures.size() > 0) + { + VulkanglTFModel::Texture texture = textures[materials[primitive.materialIndex].baseColorTextureIndex]; + auto normalMap = textures[materials[primitive.materialIndex].normalMapTextureIndex]; + auto roughMetalMap = textures[materials[primitive.materialIndex].matalicRoughTextureIndex]; + + if (materials[primitive.materialIndex].emissiveTextureIndex >= 0) + { + auto emissiveMap = textures[materials[primitive.materialIndex].emissiveTextureIndex]; + vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 4, 1, &images[emissiveMap.imageIndex].descriptorSet, 0, nullptr); + } + + // Bind the descriptor for the current primitive's texture + vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 1, 1, &images[texture.imageIndex].descriptorSet, 0, nullptr); + vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 2, 1, &images[normalMap.imageIndex].descriptorSet, 0, nullptr); + vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 3, 1, &images[roughMetalMap.imageIndex].descriptorSet, 0, nullptr); + vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 5, 1, &materials[primitive.materialIndex].materialData.descriptorSet, 0, nullptr); + } vkCmdDrawIndexed(commandBuffer, primitive.indexCount, 1, primitive.firstIndex, 0, 0); } } } for (auto& child : node->children) { - drawNode(commandBuffer, pipelineLayout, child); + drawNode(commandBuffer, pipelineLayout, child, bPushConstants); } } // Draw the glTF scene starting at the top-level-nodes - void draw(VkCommandBuffer commandBuffer, VkPipelineLayout pipelineLayout) + void VulkanglTFModel::draw(VkCommandBuffer commandBuffer, VkPipelineLayout pipelineLayout, bool flag = true) { // All vertices and indices are stored in single buffers, so we only need to bind once VkDeviceSize offsets[1] = { 0 }; @@ -372,7 +503,7 @@ public: vkCmdBindIndexBuffer(commandBuffer, indices.buffer, 0, VK_INDEX_TYPE_UINT32); // Render all nodes at top-level for (auto& node : nodes) { - drawNode(commandBuffer, pipelineLayout, node); + drawNode(commandBuffer, pipelineLayout, node, flag); } } @@ -385,30 +516,9 @@ public: VulkanglTFModel glTFModel; - struct ShaderData { - vks::Buffer buffer; - struct Values { - glm::mat4 projection; - glm::mat4 model; - glm::vec4 lightPos = glm::vec4(5.0f, 5.0f, -5.0f, 1.0f); - glm::vec4 viewPos; - } values; - } shaderData; - struct Pipelines { - VkPipeline solid; - VkPipeline wireframe = VK_NULL_HANDLE; - } pipelines; - - VkPipelineLayout pipelineLayout; - VkDescriptorSet descriptorSet; - - struct DescriptorSetLayouts { - VkDescriptorSetLayout matrices; - VkDescriptorSetLayout textures; - } descriptorSetLayouts; - - VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) + VulkanExample::VulkanExample(): + VulkanExampleBase(ENABLE_VALIDATION) { title = "homework1"; camera.type = Camera::CameraType::lookat; @@ -418,23 +528,7 @@ public: camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f); } - ~VulkanExample() - { - // Clean up used Vulkan resources - // Note : Inherited destructor cleans up resources stored in base class - vkDestroyPipeline(device, pipelines.solid, nullptr); - if (pipelines.wireframe != VK_NULL_HANDLE) { - vkDestroyPipeline(device, pipelines.wireframe, nullptr); - } - - vkDestroyPipelineLayout(device, pipelineLayout, nullptr); - vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.matrices, nullptr); - vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.textures, nullptr); - - shaderData.buffer.destroy(); - } - - virtual void getEnabledFeatures() + void VulkanExample::getEnabledFeatures() { // Fill mode non solid is required for wireframe display if (deviceFeatures.fillModeNonSolid) { @@ -442,17 +536,129 @@ public: }; } + void VulkanExample::setupFrameBuffer() + { + VulkanExampleBase::setupFrameBuffer(); + if (pbrFrameBuffer.bCreate && (pbrFrameBuffer.fbo.width != width || pbrFrameBuffer.fbo.height != height)) + { + pbrFrameBuffer.color.destroy(device); + pbrFrameBuffer.depth.destroy(device); + pbrFrameBuffer.fbo.destroy(device); + vkDestroySampler(device, colorSampler, nullptr); + } + + //Create image color attachment + pbrFrameBuffer.fbo.setSize(width, height); + VkFormat attDepthFormat; + VkBool32 validDepthFormat = vks::tools::getSupportedDepthFormat(physicalDevice, &attDepthFormat); + assert(validDepthFormat); + + createAttachment(VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, &pbrFrameBuffer.color, width, height); + createAttachment(attDepthFormat, VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, &pbrFrameBuffer.depth, width, height); + { + std::array attachs = {}; + for (uint32_t i = 0; i < static_cast(attachs.size()); ++i) + { + attachs[i].samples = VK_SAMPLE_COUNT_1_BIT; + attachs[i].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; + attachs[i].storeOp = VK_ATTACHMENT_STORE_OP_STORE; + attachs[i].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; + attachs[i].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; + attachs[i].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; + attachs[i].finalLayout = i == 1 ? VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL : VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; + } + attachs[0].format = pbrFrameBuffer.color.format; + attachs[1].format = pbrFrameBuffer.depth.format; + + VkAttachmentReference colorReference = {}; + colorReference.attachment = 0; + colorReference.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; + + VkAttachmentReference depthReference = {}; + depthReference.attachment = 1; + depthReference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; + + VkSubpassDescription subpass = {}; + subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; + subpass.pColorAttachments = &colorReference; + subpass.colorAttachmentCount = 1; + subpass.pDepthStencilAttachment = &depthReference; + + std::array dependencies; + //To test src 0 + dependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL; + dependencies[0].dstSubpass = 0; + dependencies[0].srcStageMask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT; + dependencies[0].dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; + dependencies[0].srcAccessMask = VK_ACCESS_SHADER_READ_BIT; + dependencies[0].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; + dependencies[0].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT; + + dependencies[1].srcSubpass = 0; + dependencies[1].dstSubpass = VK_SUBPASS_EXTERNAL; + dependencies[1].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; + dependencies[1].dstStageMask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT; + dependencies[1].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; + dependencies[1].dstAccessMask = VK_ACCESS_SHADER_READ_BIT; + dependencies[1].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT; + + VkRenderPassCreateInfo renderPassCI = {}; + renderPassCI.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO; + renderPassCI.pAttachments = attachs.data(); + renderPassCI.attachmentCount = static_cast(attachs.size()); + renderPassCI.pSubpasses = &subpass; + renderPassCI.subpassCount = 1; + renderPassCI.pDependencies = dependencies.data(); + renderPassCI.dependencyCount = 2; + VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassCI, nullptr, &pbrFrameBuffer.fbo.renderPass)); + + //Create FBO + VkImageView attachments[2] = { pbrFrameBuffer.color.imageView, pbrFrameBuffer.depth.imageView }; + VkFramebufferCreateInfo fbufCreateInfo = vks::initializers::framebufferCreateInfo(); + fbufCreateInfo.renderPass = pbrFrameBuffer.fbo.renderPass; + fbufCreateInfo.pAttachments = attachments; + fbufCreateInfo.attachmentCount = 2; + fbufCreateInfo.width = pbrFrameBuffer.fbo.width; + fbufCreateInfo.height = pbrFrameBuffer.fbo.height; + fbufCreateInfo.layers = 1; + VK_CHECK_RESULT(vkCreateFramebuffer(device, &fbufCreateInfo, nullptr, &pbrFrameBuffer.fbo.frameBuffer)); + } + + //Create Image sampler + VkSamplerCreateInfo samplerCI = vks::initializers::samplerCreateInfo(); + samplerCI.magFilter = VK_FILTER_NEAREST; + samplerCI.minFilter = VK_FILTER_NEAREST; + samplerCI.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; + samplerCI.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; + samplerCI.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; + samplerCI.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; + //samplerCI.mipLodBias = 0.0f; + //samplerCI.maxAnisotropy = 1.0f; + samplerCI.minLod = 0.0f; + samplerCI.maxLod = 1.0f; + samplerCI.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE; + VK_CHECK_RESULT(vkCreateSampler(device, &samplerCI, nullptr, &colorSampler)); + + if (tonemappingDescriptorSet != VK_NULL_HANDLE) //Bad logic + { + auto imageInfo = vks::initializers::descriptorImageInfo(colorSampler, pbrFrameBuffer.color.imageView, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL); + VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(tonemappingDescriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &imageInfo); + vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr); + } + pbrFrameBuffer.bCreate = true; + } + void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = defaultClearColor; - clearValues[0].color = { { 0.25f, 0.25f, 0.25f, 1.0f } };; + clearValues[0].color = { { 0.25f, 0.25f, 0.25f, 1.0f } }; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); - renderPassBeginInfo.renderPass = renderPass; + renderPassBeginInfo.renderPass = pbrFrameBuffer.fbo.renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; @@ -465,22 +671,41 @@ public: for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { - renderPassBeginInfo.framebuffer = frameBuffers[i]; + renderPassBeginInfo.framebuffer = pbrFrameBuffer.fbo.frameBuffer; VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); // Bind scene matrices descriptor to set 0 - vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, nullptr); + vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.pbrLayout, 0, 1, &descriptorSet, 0, nullptr); + vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.pbrLayout, 6, 1, &skinDescriptorSet, 0, nullptr); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, wireframe ? pipelines.wireframe : pipelines.solid); - glTFModel.draw(drawCmdBuffers[i], pipelineLayout); - drawUI(drawCmdBuffers[i]); + glTFModel.draw(drawCmdBuffers[i], pipelineLayouts.pbrLayout); vkCmdEndRenderPass(drawCmdBuffers[i]); + + { + VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); + renderPassBeginInfo.renderPass = renderPass; + renderPassBeginInfo.framebuffer = VulkanExampleBase::frameBuffers[i]; + renderPassBeginInfo.renderArea.extent.width = width; + renderPassBeginInfo.renderArea.extent.height = height; + renderPassBeginInfo.clearValueCount = 2; + renderPassBeginInfo.pClearValues = clearValues; + + vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); + vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); + vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); + vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.tonemappingLayout, 0, 1, &tonemappingDescriptorSet, 0, NULL); + vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.toneMapping); + vkCmdDraw(drawCmdBuffers[i], 3, 1, 0, 0); + drawUI(drawCmdBuffers[i]); + vkCmdEndRenderPass(drawCmdBuffers[i]); + } VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } - void loadglTFFile(std::string filename) + void VulkanExample::loadglTFFile(std::string filename, VulkanglTFModel& model, bool bSkyboxFlag = false) { tinygltf::Model glTFInput; tinygltf::TinyGLTF gltfContext; @@ -496,21 +721,23 @@ public: bool fileLoaded = gltfContext.LoadASCIIFromFile(&glTFInput, &error, &warning, filename); // Pass some Vulkan resources required for setup and rendering to the glTF model loading class - glTFModel.vulkanDevice = vulkanDevice; - glTFModel.copyQueue = queue; + model.vulkanDevice = vulkanDevice; + model.copyQueue = queue; std::vector indexBuffer; std::vector vertexBuffer; if (fileLoaded) { - glTFModel.loadImages(glTFInput); - glTFModel.loadMaterials(glTFInput); - glTFModel.loadTextures(glTFInput); + model.nodeCount = static_cast(glTFInput.nodes.size()); + model.loadImages(glTFInput); + model.loadMaterials(glTFInput); + model.loadTextures(glTFInput); const tinygltf::Scene& scene = glTFInput.scenes[0]; for (size_t i = 0; i < scene.nodes.size(); i++) { const tinygltf::Node node = glTFInput.nodes[scene.nodes[i]]; - glTFModel.loadNode(node, glTFInput, nullptr, indexBuffer, vertexBuffer); + model.loadNode(node, glTFInput, nullptr, scene.nodes[i], indexBuffer, vertexBuffer); } + model.loadAnimations(glTFInput); } else { vks::tools::exitFatal("Could not open the glTF file.\n\nThe file is part of the additional asset pack.\n\nRun \"download_assets.py\" in the repository root to download the latest version.", -1); @@ -523,7 +750,7 @@ public: size_t vertexBufferSize = vertexBuffer.size() * sizeof(VulkanglTFModel::Vertex); size_t indexBufferSize = indexBuffer.size() * sizeof(uint32_t); - glTFModel.indices.count = static_cast(indexBuffer.size()); + model.indices.count = static_cast(indexBuffer.size()); struct StagingBuffer { VkBuffer buffer; @@ -552,14 +779,14 @@ public: VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, vertexBufferSize, - &glTFModel.vertices.buffer, - &glTFModel.vertices.memory)); + &model.vertices.buffer, + &model.vertices.memory)); VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, indexBufferSize, - &glTFModel.indices.buffer, - &glTFModel.indices.memory)); + &model.indices.buffer, + &model.indices.memory)); // Copy data from staging buffers (host) do device local buffer (gpu) VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); @@ -569,7 +796,7 @@ public: vkCmdCopyBuffer( copyCmd, vertexStaging.buffer, - glTFModel.vertices.buffer, + model.vertices.buffer, 1, ©Region); @@ -577,7 +804,7 @@ public: vkCmdCopyBuffer( copyCmd, indexStaging.buffer, - glTFModel.indices.buffer, + model.indices.buffer, 1, ©Region); @@ -592,7 +819,9 @@ public: void loadAssets() { - loadglTFFile(getAssetPath() + "buster_drone/busterDrone.gltf"); + loadglTFFile(getAssetPath() + "buster_drone/busterDrone.gltf", glTFModel); + loadglTFFile(getAssetPath() + "models/cube.gltf", skyboxModel, true); + ibltextures.skyboxCube.loadFromFile(getAssetPath() + "textures/hdr/pisa_cube.ktx", VK_FORMAT_R16G16B16A16_SFLOAT, vulkanDevice, queue); } void setupDescriptors() @@ -600,44 +829,104 @@ public: /* This sample uses separate descriptor sets (and layouts) for the matrices and materials (textures) */ + //Descriptor Pool Alloc + { + std::vector poolSizes = { + vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 4), + // One combined image sampler per model image/texture + vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, static_cast(glTFModel.images.size())), + vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 4), // Add aditional sampler descriptor + vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1) + }; + // One set for matrices and one per model image/texture + const uint32_t maxSetCount = static_cast(glTFModel.images.size()) + 6; + VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, maxSetCount); + VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); + } - std::vector poolSizes = { - vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1), - // One combined image sampler per model image/texture - vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, static_cast(glTFModel.images.size())), + + // Descriptor set layout for passing matrices ---and precompute texture add in this descriptor + std::vector setLayoutBindings = + { + vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0), + vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1), + vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 2), + vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 3), }; - // One set for matrices and one per model image/texture - const uint32_t maxSetCount = static_cast(glTFModel.images.size()) + 1; - VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, maxSetCount); - VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); - - // Descriptor set layout for passing matrices - VkDescriptorSetLayoutBinding setLayoutBinding = vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0); - VkDescriptorSetLayoutCreateInfo descriptorSetLayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(&setLayoutBinding, 1); + VkDescriptorSetLayoutCreateInfo descriptorSetLayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayouts.matrices)); - // Descriptor set layout for passing material textures - setLayoutBinding = vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 0); - VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayouts.textures)); - // Pipeline layout using both descriptor sets (set 0 = matrices, set 1 = material) - std::array setLayouts = { descriptorSetLayouts.matrices, descriptorSetLayouts.textures }; - VkPipelineLayoutCreateInfo pipelineLayoutCI= vks::initializers::pipelineLayoutCreateInfo(setLayouts.data(), static_cast(setLayouts.size())); - // We will use push constants to push the local matrices of a primitive to the vertex shader - VkPushConstantRange pushConstantRange = vks::initializers::pushConstantRange(VK_SHADER_STAGE_VERTEX_BIT, sizeof(glm::mat4), 0); - // Push constant ranges are part of the pipeline layout - pipelineLayoutCI.pushConstantRangeCount = 1; - pipelineLayoutCI.pPushConstantRanges = &pushConstantRange; - VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayout)); - // Descriptor set for scene matrices - VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.matrices, 1); - VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet)); - VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &shaderData.buffer.descriptor); - vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr); - // Descriptor sets for materials - for (auto& image : glTFModel.images) { + VkDescriptorSetLayoutBinding materialBufferLayoutBinding = vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_FRAGMENT_BIT, 0); + descriptorSetLayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(&materialBufferLayoutBinding, 1); + VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayouts.materialUniform)); + + // Descriptor set layout for passing material textures + VkDescriptorSetLayoutBinding setLayoutBinding = vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 0); + descriptorSetLayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(&setLayoutBinding, 1); + VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayouts.textures)); + + setLayoutBinding = vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0); + VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayouts.ssbo)); + //Pbr pipeline layout + { + // Pipeline layout using both descriptor sets (set 0 = matrices, set 1 = material) + std::array setLayouts = + { descriptorSetLayouts.matrices, + descriptorSetLayouts.textures, + descriptorSetLayouts.textures, + descriptorSetLayouts.textures, + descriptorSetLayouts.textures, + descriptorSetLayouts.materialUniform, + descriptorSetLayouts.ssbo + }; + VkPipelineLayoutCreateInfo pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(setLayouts.data(), static_cast(setLayouts.size())); + VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayouts.pbrLayout)); + + // Descriptor set for scene matrices + VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.matrices, 1); + VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet)); + std::vector writeDescriptorSets = + { + vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &shaderData.buffer.descriptor), + vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &ibltextures.irradianceCube.descriptor), + vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2, &ibltextures.lutBrdf.descriptor), + vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 3, &ibltextures.prefilteredCube.descriptor), + }; + vkUpdateDescriptorSets(device, 4, writeDescriptorSets.data(), 0, nullptr); + + for (auto& material : glTFModel.materials) + { + const VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.materialUniform, 1); + VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &material.materialData.descriptorSet)); + VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet( + material.materialData.descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &material.materialData.buffer.descriptor); + vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr); + } + + // Descriptor sets for materials + for (auto& image : glTFModel.images) { + const VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.textures, 1); + VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &image.descriptorSet)); + VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(image.descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &image.texture.descriptor); + vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr); + } + { + const VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.ssbo, 1); + VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &skinDescriptorSet)); + VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(skinDescriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 0, &shaderData.skinSSBO.descriptor); + vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr); + } + } + //Tone Mapping pipeline layout + { + auto pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayouts.textures, 1); + VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayouts.tonemappingLayout)); + const VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.textures, 1); - VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &image.descriptorSet)); - VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(image.descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &image.texture.descriptor); + VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &tonemappingDescriptorSet)); + + auto imageInfo = vks::initializers::descriptorImageInfo(colorSampler, pbrFrameBuffer.color.imageView, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL); + VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(tonemappingDescriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &imageInfo); vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr); } } @@ -662,6 +951,7 @@ public: vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, normal)),// Location 1: Normal vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, uv)), // Location 2: Texture coordinates vks::initializers::vertexInputAttributeDescription(0, 3, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, color)), // Location 3: Color + vks::initializers::vertexInputAttributeDescription(0, 4, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, tangent)), // Location 4 : Tangent }; VkPipelineVertexInputStateCreateInfo vertexInputStateCI = vks::initializers::pipelineVertexInputStateCreateInfo(); vertexInputStateCI.vertexBindingDescriptionCount = static_cast(vertexInputBindings.size()); @@ -669,12 +959,12 @@ public: vertexInputStateCI.vertexAttributeDescriptionCount = static_cast(vertexInputAttributes.size()); vertexInputStateCI.pVertexAttributeDescriptions = vertexInputAttributes.data(); - const std::array shaderStages = { + std::array shaderStages = { loadShader(getHomeworkShadersPath() + "homework1/mesh.vert.spv", VK_SHADER_STAGE_VERTEX_BIT), loadShader(getHomeworkShadersPath() + "homework1/mesh.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT) }; - VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0); + VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayouts.pbrLayout, pbrFrameBuffer.fbo.renderPass, 0); pipelineCI.pVertexInputState = &vertexInputStateCI; pipelineCI.pInputAssemblyState = &inputAssemblyStateCI; pipelineCI.pRasterizationState = &rasterizationStateCI; @@ -695,8 +985,1061 @@ public: rasterizationStateCI.lineWidth = 1.0f; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.wireframe)); } + //Create Tone Mapping render pipeline + CreateToneMappingPipeline(); } + void VulkanExample::CreateToneMappingPipeline() + { + if (pipelines.toneMapping != VK_NULL_HANDLE) + { + vkDestroyPipeline(device, pipelines.toneMapping, nullptr); + pipelines.toneMapping = VK_NULL_HANDLE; + } + VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); + VkPipelineRasterizationStateCreateInfo rasterizationStateCI = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0); + VkPipelineColorBlendAttachmentState blendAttachmentStateCI = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE); + VkPipelineColorBlendStateCreateInfo colorBlendStateCI = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentStateCI); + VkPipelineDepthStencilStateCreateInfo depthStencilStateCI = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_FALSE, VK_FALSE, VK_COMPARE_OP_LESS_OR_EQUAL); + VkPipelineViewportStateCreateInfo viewportStateCI = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0); + VkPipelineMultisampleStateCreateInfo multisampleStateCI = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0); + const std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; + VkPipelineDynamicStateCreateInfo dynamicStateCI = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables.data(), static_cast(dynamicStateEnables.size()), 0); + VkPipelineVertexInputStateCreateInfo emptyInputState = vks::initializers::pipelineVertexInputStateCreateInfo(); + + + const std::string fragPath = ToneMapping ? "homework1/tonemapping_enable.frag.spv" : "homework1/tonemapping_disable.frag.spv"; + std::array shaderStages = { + loadShader(getHomeworkShadersPath() + "homework1/genbrdflut.vert.spv", VK_SHADER_STAGE_VERTEX_BIT), + loadShader(getHomeworkShadersPath() + fragPath, VK_SHADER_STAGE_FRAGMENT_BIT) + }; + + VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayouts.tonemappingLayout, renderPass, 0); + pipelineCI.pVertexInputState = &emptyInputState; + pipelineCI.pInputAssemblyState = &inputAssemblyStateCI; + pipelineCI.pRasterizationState = &rasterizationStateCI; + pipelineCI.pColorBlendState = &colorBlendStateCI; + pipelineCI.pMultisampleState = &multisampleStateCI; + pipelineCI.pViewportState = &viewportStateCI; + pipelineCI.pDepthStencilState = &depthStencilStateCI; + pipelineCI.pDynamicState = &dynamicStateCI; + pipelineCI.stageCount = static_cast(shaderStages.size()); + pipelineCI.pStages = shaderStages.data(); + + VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.toneMapping)); + } + + + //----------------------------Prepare precompute Lighting or BRDF LUT-----------------------------------------------// + //Irradiance map for diffuse lighting + void VulkanExample::GenerateIrradianceCubemap() + { + auto tStart = std::chrono::high_resolution_clock::now(); + + constexpr VkFormat format = VK_FORMAT_R32G32B32A32_SFLOAT; + constexpr int32_t dim = 64; + const uint32_t numMips = static_cast(floor(log2(dim))) + 1; + + VkImageCreateInfo imageCI = vks::initializers::imageCreateInfo(); + imageCI.imageType = VK_IMAGE_TYPE_2D; + imageCI.format = format; + imageCI.extent.width = dim; + imageCI.extent.height = dim; + imageCI.extent.depth = 1; + imageCI.mipLevels = numMips; + imageCI.arrayLayers = 6; + imageCI.samples = VK_SAMPLE_COUNT_1_BIT; + imageCI.tiling = VK_IMAGE_TILING_OPTIMAL; + imageCI.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT; + imageCI.flags = VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT; + VK_CHECK_RESULT(vkCreateImage(device, &imageCI, nullptr, &ibltextures.irradianceCube.image)) + VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo(); + VkMemoryRequirements memReqs; + vkGetImageMemoryRequirements(device, ibltextures.irradianceCube.image, &memReqs); + memAlloc.allocationSize = memReqs.size; + memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); + VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &ibltextures.irradianceCube.deviceMemory)) + VK_CHECK_RESULT(vkBindImageMemory(device, ibltextures.irradianceCube.image, ibltextures.irradianceCube.deviceMemory, 0)) + VkImageViewCreateInfo viewCI = vks::initializers::imageViewCreateInfo(); + viewCI.viewType = VK_IMAGE_VIEW_TYPE_CUBE; + viewCI.format = format; + viewCI.subresourceRange = {}; + viewCI.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; + viewCI.subresourceRange.levelCount = numMips; + viewCI.subresourceRange.layerCount = 6; + viewCI.image = ibltextures.irradianceCube.image; + VK_CHECK_RESULT(vkCreateImageView(device, &viewCI, nullptr, &ibltextures.irradianceCube.view)) + + VkSamplerCreateInfo samplerCI = vks::initializers::samplerCreateInfo(); + samplerCI.magFilter = VK_FILTER_LINEAR; + samplerCI.minFilter = VK_FILTER_LINEAR; + samplerCI.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; + samplerCI.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; + samplerCI.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; + samplerCI.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; + samplerCI.minLod = 0.0f; + samplerCI.maxLod = static_cast(numMips); + samplerCI.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE; + VK_CHECK_RESULT(vkCreateSampler(device, &samplerCI, nullptr, &ibltextures.irradianceCube.sampler)) + + ibltextures.irradianceCube.descriptor.imageView = ibltextures.irradianceCube.view; + ibltextures.irradianceCube.descriptor.sampler = ibltextures.irradianceCube.sampler; + ibltextures.irradianceCube.descriptor.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; + ibltextures.irradianceCube.device = vulkanDevice; + + //Setup Framebuffer and so on + VkAttachmentDescription attDesc = {}; + attDesc.format = format; + attDesc.samples = VK_SAMPLE_COUNT_1_BIT; + attDesc.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; + attDesc.storeOp = VK_ATTACHMENT_STORE_OP_STORE; + attDesc.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; + attDesc.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; + attDesc.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; + attDesc.finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; + + VkAttachmentReference colorReference = { 0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL }; + VkSubpassDescription subpassDescription = {}; + subpassDescription.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; + subpassDescription.colorAttachmentCount = 1; + subpassDescription.pColorAttachments = &colorReference; + + std::array dependencies; + dependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL; + dependencies[0].dstSubpass = 0; + dependencies[0].srcStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT; + dependencies[0].dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; + dependencies[0].srcAccessMask = VK_ACCESS_MEMORY_READ_BIT; + dependencies[0].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; + dependencies[0].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT; + dependencies[1].srcSubpass = 0; + dependencies[1].dstSubpass = VK_SUBPASS_EXTERNAL; + dependencies[1].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; + dependencies[1].dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT; + dependencies[1].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; + dependencies[1].dstAccessMask = VK_ACCESS_MEMORY_READ_BIT; + dependencies[1].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT; + + VkRenderPassCreateInfo renderPassCI = vks::initializers::renderPassCreateInfo(); + renderPassCI.attachmentCount = 1; + renderPassCI.pAttachments = &attDesc; + renderPassCI.subpassCount = 1; + renderPassCI.pSubpasses = &subpassDescription; + renderPassCI.dependencyCount = 2; + renderPassCI.pDependencies = dependencies.data(); + VkRenderPass renderpass; + VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassCI, nullptr, &renderpass)); + + { + VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo(); + imageCreateInfo.imageType = VK_IMAGE_TYPE_2D; + imageCreateInfo.format = format; + imageCreateInfo.extent.width = dim; + imageCreateInfo.extent.height = dim; + imageCreateInfo.extent.depth = 1; + imageCreateInfo.mipLevels = 1; + imageCreateInfo.arrayLayers = 1; + imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; + imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL; + imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; + imageCreateInfo.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT; + imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; + VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &offscreen.image)) + + VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo(); + VkMemoryRequirements memReqs; + vkGetImageMemoryRequirements(device, offscreen.image, &memReqs); + memAlloc.allocationSize = memReqs.size; + memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); + VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &offscreen.memory)) + VK_CHECK_RESULT(vkBindImageMemory(device, offscreen.image, offscreen.memory, 0)) + + VkImageViewCreateInfo colorImageView = vks::initializers::imageViewCreateInfo(); + colorImageView.viewType = VK_IMAGE_VIEW_TYPE_2D; + colorImageView.format = format; + colorImageView.flags = 0; + colorImageView.subresourceRange = {}; + colorImageView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; + colorImageView.subresourceRange.baseMipLevel = 0; + colorImageView.subresourceRange.levelCount = 1; + colorImageView.subresourceRange.baseArrayLayer = 0; + colorImageView.subresourceRange.layerCount = 1; + colorImageView.image = offscreen.image; + VK_CHECK_RESULT(vkCreateImageView(device, &colorImageView, nullptr, &offscreen.view)) + + VkFramebufferCreateInfo fbufCreateInfo = vks::initializers::framebufferCreateInfo(); + fbufCreateInfo.renderPass = renderpass; + fbufCreateInfo.attachmentCount = 1; + fbufCreateInfo.pAttachments = &offscreen.view; + fbufCreateInfo.width = dim; + fbufCreateInfo.height = dim; + fbufCreateInfo.layers = 1; + VK_CHECK_RESULT(vkCreateFramebuffer(device, &fbufCreateInfo, nullptr, &offscreen.framebuffer)) + + VkCommandBuffer layoutCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); + vks::tools::setImageLayout( + layoutCmd, + offscreen.image, + VK_IMAGE_ASPECT_COLOR_BIT, + VK_IMAGE_LAYOUT_UNDEFINED, + VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL); + vulkanDevice->flushCommandBuffer(layoutCmd, queue, true); + } + VkDescriptorSetLayout descriptorsetlayout; + std::vector setLayoutBindings = + { + vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 0), + }; + VkDescriptorSetLayoutCreateInfo descriptorsetlayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings); + VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorsetlayoutCI, nullptr, &descriptorsetlayout)); + + std::vector poolSizes = { vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1) }; + VkDescriptorPoolCreateInfo descriptorPoolCI = vks::initializers::descriptorPoolCreateInfo(poolSizes, 2); + VkDescriptorPool descriptorpool; + VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolCI, nullptr, &descriptorpool)); + + VkDescriptorSet descriptorset; + VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorpool, &descriptorsetlayout, 1); + VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorset)); + VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(descriptorset, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &ibltextures.skyboxCube.descriptor); + vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr); + + + + VkPipelineLayout pipelinelayout; + std::vector pushConstantRanges = + { + vks::initializers::pushConstantRange(VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, sizeof(IrradiancePushBlock), 0) + }; + VkPipelineLayoutCreateInfo pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(&descriptorsetlayout, 1); + pipelineLayoutCI.pushConstantRangeCount = 1; + pipelineLayoutCI.pPushConstantRanges = pushConstantRanges.data(); + VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelinelayout)); + + //Pipeline Setting + VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); + VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE); + VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE); + VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState); + VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_FALSE, VK_FALSE, VK_COMPARE_OP_LESS_OR_EQUAL); + VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1); + VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT); + std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; + VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables); + std::array shaderStages; + + const std::vector vertexInputBindings = + { + vks::initializers::vertexInputBindingDescription(0, sizeof(VulkanglTFModel::Vertex), VK_VERTEX_INPUT_RATE_VERTEX), + }; + + const std::vector vertexInputAttributes = { + vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, pos)), // Location 0: Position + //vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, normal)),// Location 1: Normal + //vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, uv)), // Location 2: Texture coordinates + //vks::initializers::vertexInputAttributeDescription(0, 3, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, color)), // Location 3: Color + //vks::initializers::vertexInputAttributeDescription(0, 4, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, tangent)), // Location 4 : Tangent + }; + VkPipelineVertexInputStateCreateInfo vertexInputStateCI = vks::initializers::pipelineVertexInputStateCreateInfo(); + vertexInputStateCI.vertexBindingDescriptionCount = static_cast(vertexInputBindings.size()); + vertexInputStateCI.pVertexBindingDescriptions = vertexInputBindings.data(); + vertexInputStateCI.vertexAttributeDescriptionCount = static_cast(vertexInputAttributes.size()); + vertexInputStateCI.pVertexAttributeDescriptions = vertexInputAttributes.data(); + + VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelinelayout, renderpass); + pipelineCI.pInputAssemblyState = &inputAssemblyState; + pipelineCI.pRasterizationState = &rasterizationState; + pipelineCI.pColorBlendState = &colorBlendState; + pipelineCI.pMultisampleState = &multisampleState; + pipelineCI.pViewportState = &viewportState; + pipelineCI.pDepthStencilState = &depthStencilState; + pipelineCI.pDynamicState = &dynamicState; + pipelineCI.stageCount = 2; + pipelineCI.pStages = shaderStages.data(); + pipelineCI.renderPass = renderpass; + + pipelineCI.pVertexInputState = &vertexInputStateCI; + shaderStages[0] = loadShader(getHomeworkShadersPath() + "homework1/filtercube.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); + shaderStages[1] = loadShader(getHomeworkShadersPath() + "homework1/irradiancecube.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); + VkPipeline pipeline; + VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipeline)); + + //Render + VkClearValue clearValues[1]; + clearValues[0].color = { { 0.0f, 0.0f, 0.2f, 0.0f } }; + VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); + renderPassBeginInfo.renderPass = renderpass; + renderPassBeginInfo.framebuffer = offscreen.framebuffer; + renderPassBeginInfo.renderArea.extent.width = dim; + renderPassBeginInfo.renderArea.extent.height = dim; + renderPassBeginInfo.clearValueCount = 1; + renderPassBeginInfo.pClearValues = clearValues; + + //six face in cube map + std::vector matrices = { + // POSITIVE_X + glm::rotate(glm::rotate(glm::mat4(1.0f), glm::radians(90.0f), glm::vec3(0.0f, 1.0f, 0.0f)), glm::radians(180.0f), glm::vec3(1.0f, 0.0f, 0.0f)), + // NEGATIVE_X + glm::rotate(glm::rotate(glm::mat4(1.0f), glm::radians(-90.0f), glm::vec3(0.0f, 1.0f, 0.0f)), glm::radians(180.0f), glm::vec3(1.0f, 0.0f, 0.0f)), + // POSITIVE_Y + glm::rotate(glm::mat4(1.0f), glm::radians(-90.0f), glm::vec3(1.0f, 0.0f, 0.0f)), + // NEGATIVE_Y + glm::rotate(glm::mat4(1.0f), glm::radians(90.0f), glm::vec3(1.0f, 0.0f, 0.0f)), + // POSITIVE_Z + glm::rotate(glm::mat4(1.0f), glm::radians(180.0f), glm::vec3(1.0f, 0.0f, 0.0f)), + // NEGATIVE_Z + glm::rotate(glm::mat4(1.0f), glm::radians(180.0f), glm::vec3(0.0f, 0.0f, 1.0f)), + }; + VkCommandBuffer cmdBuf = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); + VkViewport viewport = vks::initializers::viewport((float)dim, (float)dim, 0.0f, 1.0f); + VkRect2D scissor = vks::initializers::rect2D(dim, dim, 0, 0); + + vkCmdSetViewport(cmdBuf, 0, 1, &viewport); + vkCmdSetScissor(cmdBuf, 0, 1, &scissor); + + VkImageSubresourceRange subresourceRange = {}; + subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; + subresourceRange.baseMipLevel = 0; + subresourceRange.levelCount = numMips; + subresourceRange.layerCount = 6; + + vks::tools::setImageLayout( + cmdBuf, + ibltextures.irradianceCube.image, + VK_IMAGE_LAYOUT_UNDEFINED, + VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, + subresourceRange); + + for(uint32_t m = 0; m < numMips; ++m) + { + for(uint32_t f = 0; f < 6; ++f) + { + viewport.width = static_cast(dim * std::pow(0.5f, m)); + viewport.height = static_cast(dim * std::pow(0.5f, m)); + vkCmdSetViewport(cmdBuf, 0, 1, &viewport); + // Render scene from cube face's point of view + vkCmdBeginRenderPass(cmdBuf, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); + irradiancePushBlock.mvp = glm::perspective((float)(M_PI / 2.0), 1.0f, 0.1f, 512.0f) * matrices[f]; + vkCmdPushConstants(cmdBuf, pipelinelayout, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0, sizeof(IrradiancePushBlock), &irradiancePushBlock); + + vkCmdBindPipeline(cmdBuf, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline); + vkCmdBindDescriptorSets(cmdBuf, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelinelayout, 0, 1, &descriptorset, 0, NULL); + skyboxModel.draw(cmdBuf, pipelinelayout, false); + vkCmdEndRenderPass(cmdBuf); + + vks::tools::setImageLayout( + cmdBuf, + offscreen.image, + VK_IMAGE_ASPECT_COLOR_BIT, + VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, + VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL); + + VkImageCopy copyRegion = {}; + copyRegion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; + copyRegion.srcSubresource.layerCount = 1; + copyRegion.srcSubresource.mipLevel = 0; + copyRegion.srcSubresource.baseArrayLayer = 0; + + copyRegion.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; + copyRegion.dstSubresource.layerCount = 1; + copyRegion.dstSubresource.mipLevel = m; + copyRegion.dstSubresource.baseArrayLayer = f; + + copyRegion.extent.width = static_cast(viewport.width); + copyRegion.extent.height = static_cast(viewport.height); + copyRegion.extent.depth = 1; + + vkCmdCopyImage( + cmdBuf, + offscreen.image, + VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, + ibltextures.irradianceCube.image, + VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, + 1, + ©Region); + vks::tools::setImageLayout(cmdBuf, + offscreen.image, + VK_IMAGE_ASPECT_COLOR_BIT, + VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, + VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL + ); + } + } + + vks::tools::setImageLayout(cmdBuf, + ibltextures.irradianceCube.image, + VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, + VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, + subresourceRange); + vulkanDevice->flushCommandBuffer(cmdBuf, queue); + + vkDestroyRenderPass(device, renderpass, nullptr); + vkDestroyFramebuffer(device, offscreen.framebuffer, nullptr); + vkFreeMemory(device, offscreen.memory, nullptr); + vkDestroyImageView(device, offscreen.view, nullptr); + vkDestroyImage(device, offscreen.image, nullptr); + vkDestroyDescriptorPool(device, descriptorpool, nullptr); + vkDestroyDescriptorSetLayout(device, descriptorsetlayout, nullptr); + vkDestroyPipeline(device, pipeline, nullptr); + vkDestroyPipelineLayout(device, pipelinelayout, nullptr); + + auto tEnd = std::chrono::high_resolution_clock::now(); + auto tDiff = std::chrono::duration(tEnd - tStart).count(); + std::cout << "Generating irradiance cube with " << numMips << " mip levels took " << tDiff << " ms" << std::endl; + } + + void VulkanExample::GeneratePrefilteredCubemap() + { + auto tStart = std::chrono::high_resolution_clock::now(); + + constexpr VkFormat format = VK_FORMAT_R32G32B32A32_SFLOAT; + constexpr int32_t dim = 512; + const uint32_t numMips = static_cast(floor(log2(dim))) + 1; + + VkImageCreateInfo imageCI = vks::initializers::imageCreateInfo(); + imageCI.imageType = VK_IMAGE_TYPE_2D; + imageCI.format = format; + imageCI.extent.width = dim; + imageCI.extent.height = dim; + imageCI.extent.depth = 1; + imageCI.mipLevels = numMips; + imageCI.arrayLayers = 6; + imageCI.samples = VK_SAMPLE_COUNT_1_BIT; + imageCI.tiling = VK_IMAGE_TILING_OPTIMAL; + imageCI.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT; + imageCI.flags = VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT; + + VK_CHECK_RESULT(vkCreateImage(device, &imageCI, nullptr, &ibltextures.prefilteredCube.image)); + VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo(); + VkMemoryRequirements memReqs; + vkGetImageMemoryRequirements(device, ibltextures.prefilteredCube.image, &memReqs); + memAlloc.allocationSize = memReqs.size; + memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); + VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &ibltextures.prefilteredCube.deviceMemory)); + VK_CHECK_RESULT(vkBindImageMemory(device, ibltextures.prefilteredCube.image, ibltextures.prefilteredCube.deviceMemory, 0)); + + // Image view + VkImageViewCreateInfo viewCI = vks::initializers::imageViewCreateInfo(); + viewCI.viewType = VK_IMAGE_VIEW_TYPE_CUBE; + viewCI.format = format; + viewCI.subresourceRange = {}; + viewCI.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; + viewCI.subresourceRange.levelCount = numMips; + viewCI.subresourceRange.layerCount = 6; + viewCI.image = ibltextures.prefilteredCube.image; + VK_CHECK_RESULT(vkCreateImageView(device, &viewCI, nullptr, &ibltextures.prefilteredCube.view)); + + // Sampler + VkSamplerCreateInfo samplerCI = vks::initializers::samplerCreateInfo(); + samplerCI.magFilter = VK_FILTER_LINEAR; + samplerCI.minFilter = VK_FILTER_LINEAR; + samplerCI.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; + samplerCI.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; + samplerCI.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; + samplerCI.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; + samplerCI.minLod = 0.0f; + samplerCI.maxLod = static_cast(numMips); + samplerCI.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE; + VK_CHECK_RESULT(vkCreateSampler(device, &samplerCI, nullptr, &ibltextures.prefilteredCube.sampler)); + + ibltextures.prefilteredCube.descriptor.imageView = ibltextures.prefilteredCube.view; + ibltextures.prefilteredCube.descriptor.sampler = ibltextures.prefilteredCube.sampler; + ibltextures.prefilteredCube.descriptor.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; + ibltextures.prefilteredCube.device = vulkanDevice; + + // FB, Att, RP, Pipe, etc. + VkAttachmentDescription attDesc = {}; + // Color attachment + attDesc.format = format; + attDesc.samples = VK_SAMPLE_COUNT_1_BIT; + attDesc.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; + attDesc.storeOp = VK_ATTACHMENT_STORE_OP_STORE; + attDesc.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; + attDesc.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; + attDesc.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; + attDesc.finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; + VkAttachmentReference colorReference = { 0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL }; + + VkSubpassDescription subpassDescription = {}; + subpassDescription.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; + subpassDescription.colorAttachmentCount = 1; + subpassDescription.pColorAttachments = &colorReference; + + // Use subpass dependencies for layout transitions + std::array dependencies; + dependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL; + dependencies[0].dstSubpass = 0; + dependencies[0].srcStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT; + dependencies[0].dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; + dependencies[0].srcAccessMask = VK_ACCESS_MEMORY_READ_BIT; + dependencies[0].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; + dependencies[0].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT; + dependencies[1].srcSubpass = 0; + dependencies[1].dstSubpass = VK_SUBPASS_EXTERNAL; + dependencies[1].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; + dependencies[1].dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT; + dependencies[1].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; + dependencies[1].dstAccessMask = VK_ACCESS_MEMORY_READ_BIT; + dependencies[1].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT; + + // Renderpass + VkRenderPassCreateInfo renderPassCI = vks::initializers::renderPassCreateInfo(); + renderPassCI.attachmentCount = 1; + renderPassCI.pAttachments = &attDesc; + renderPassCI.subpassCount = 1; + renderPassCI.pSubpasses = &subpassDescription; + renderPassCI.dependencyCount = 2; + renderPassCI.pDependencies = dependencies.data(); + VkRenderPass renderpass; + VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassCI, nullptr, &renderpass)); + + struct { + VkImage image; + VkImageView view; + VkDeviceMemory memory; + VkFramebuffer framebuffer; + } offscreen; + //framebuffer + { + // Color attachment + VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo(); + imageCreateInfo.imageType = VK_IMAGE_TYPE_2D; + imageCreateInfo.format = format; + imageCreateInfo.extent.width = dim; + imageCreateInfo.extent.height = dim; + imageCreateInfo.extent.depth = 1; + imageCreateInfo.mipLevels = 1; + imageCreateInfo.arrayLayers = 1; + imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; + imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL; + imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; + imageCreateInfo.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT; + imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; + VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &offscreen.image)); + + VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo(); + VkMemoryRequirements memReqs; + vkGetImageMemoryRequirements(device, offscreen.image, &memReqs); + memAlloc.allocationSize = memReqs.size; + memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); + VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &offscreen.memory)); + VK_CHECK_RESULT(vkBindImageMemory(device, offscreen.image, offscreen.memory, 0)); + + VkImageViewCreateInfo colorImageView = vks::initializers::imageViewCreateInfo(); + colorImageView.viewType = VK_IMAGE_VIEW_TYPE_2D; + colorImageView.format = format; + colorImageView.flags = 0; + colorImageView.subresourceRange = {}; + colorImageView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; + colorImageView.subresourceRange.baseMipLevel = 0; + colorImageView.subresourceRange.levelCount = 1; + colorImageView.subresourceRange.baseArrayLayer = 0; + colorImageView.subresourceRange.layerCount = 1; + colorImageView.image = offscreen.image; + VK_CHECK_RESULT(vkCreateImageView(device, &colorImageView, nullptr, &offscreen.view)); + + VkFramebufferCreateInfo fbufCreateInfo = vks::initializers::framebufferCreateInfo(); + fbufCreateInfo.renderPass = renderpass; + fbufCreateInfo.attachmentCount = 1; + fbufCreateInfo.pAttachments = &offscreen.view; + fbufCreateInfo.width = dim; + fbufCreateInfo.height = dim; + fbufCreateInfo.layers = 1; + VK_CHECK_RESULT(vkCreateFramebuffer(device, &fbufCreateInfo, nullptr, &offscreen.framebuffer)); + + VkCommandBuffer layoutCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); + vks::tools::setImageLayout( + layoutCmd, + offscreen.image, + VK_IMAGE_ASPECT_COLOR_BIT, + VK_IMAGE_LAYOUT_UNDEFINED, + VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL); + vulkanDevice->flushCommandBuffer(layoutCmd, queue, true); + } + + // Descriptors + VkDescriptorSetLayout descriptorsetlayout; + std::vector setLayoutBindings = { + vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 0), + }; + VkDescriptorSetLayoutCreateInfo descriptorsetlayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings); + VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorsetlayoutCI, nullptr, &descriptorsetlayout)); + + // Descriptor Pool + std::vector poolSizes = { vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1) }; + VkDescriptorPoolCreateInfo descriptorPoolCI = vks::initializers::descriptorPoolCreateInfo(poolSizes, 2); + VkDescriptorPool descriptorpool; + VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolCI, nullptr, &descriptorpool)); + + VkDescriptorSet descriptorset; + VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorpool, &descriptorsetlayout, 1); + VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorset)); + VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(descriptorset, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &ibltextures.skyboxCube.descriptor); + vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr); + + struct PushBlock { + glm::mat4 mvp; + float roughness; + uint32_t numSamples = 32u; + } pushBlock; + + std::vector pushConstantRanges = { + vks::initializers::pushConstantRange(VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, sizeof(PushBlock), 0), + }; + VkPipelineLayoutCreateInfo pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(&descriptorsetlayout, 1); + pipelineLayoutCI.pushConstantRangeCount = 1; + pipelineLayoutCI.pPushConstantRanges = pushConstantRanges.data(); + VkPipelineLayout pipelinelayout; + VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelinelayout)); + + VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); + VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE); + VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE); + VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState); + VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_FALSE, VK_FALSE, VK_COMPARE_OP_LESS_OR_EQUAL); + VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1); + VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT); + std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; + VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables); + std::array shaderStages; + + const std::vector vertexInputBindings = + { + vks::initializers::vertexInputBindingDescription(0, sizeof(VulkanglTFModel::Vertex), VK_VERTEX_INPUT_RATE_VERTEX), + }; + + const std::vector vertexInputAttributes = { + vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, pos)), // Location 0: Position + }; + VkPipelineVertexInputStateCreateInfo vertexInputStateCI = vks::initializers::pipelineVertexInputStateCreateInfo(); + vertexInputStateCI.vertexBindingDescriptionCount = static_cast(vertexInputBindings.size()); + vertexInputStateCI.pVertexBindingDescriptions = vertexInputBindings.data(); + vertexInputStateCI.vertexAttributeDescriptionCount = static_cast(vertexInputAttributes.size()); + vertexInputStateCI.pVertexAttributeDescriptions = vertexInputAttributes.data(); + + VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelinelayout, renderpass); + pipelineCI.pInputAssemblyState = &inputAssemblyState; + pipelineCI.pRasterizationState = &rasterizationState; + pipelineCI.pColorBlendState = &colorBlendState; + pipelineCI.pMultisampleState = &multisampleState; + pipelineCI.pViewportState = &viewportState; + pipelineCI.pDepthStencilState = &depthStencilState; + pipelineCI.pDynamicState = &dynamicState; + pipelineCI.stageCount = 2; + pipelineCI.pStages = shaderStages.data(); + pipelineCI.renderPass = renderpass; + pipelineCI.pVertexInputState = &vertexInputStateCI; + + shaderStages[0] = loadShader(getHomeworkShadersPath() + "homework1/filtercube.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); + shaderStages[1] = loadShader(getHomeworkShadersPath() + "homework1/prefilterenvmap.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); + + VkPipeline pipeline; + VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipeline)); + + //Render & build cmd + VkClearValue clearValues[1]; + clearValues[0].color = { { 0.0f, 0.0f, 0.2f, 0.0f } }; + + VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); + // Reuse render pass from example pass + renderPassBeginInfo.renderPass = renderpass; + renderPassBeginInfo.framebuffer = offscreen.framebuffer; + renderPassBeginInfo.renderArea.extent.width = dim; + renderPassBeginInfo.renderArea.extent.height = dim; + renderPassBeginInfo.clearValueCount = 1; + renderPassBeginInfo.pClearValues = clearValues; + + std::vector matrices = { + // POSITIVE_X + glm::rotate(glm::rotate(glm::mat4(1.0f), glm::radians(90.0f), glm::vec3(0.0f, 1.0f, 0.0f)), glm::radians(180.0f), glm::vec3(1.0f, 0.0f, 0.0f)), + // NEGATIVE_X + glm::rotate(glm::rotate(glm::mat4(1.0f), glm::radians(-90.0f), glm::vec3(0.0f, 1.0f, 0.0f)), glm::radians(180.0f), glm::vec3(1.0f, 0.0f, 0.0f)), + // POSITIVE_Y + glm::rotate(glm::mat4(1.0f), glm::radians(-90.0f), glm::vec3(1.0f, 0.0f, 0.0f)), + // NEGATIVE_Y + glm::rotate(glm::mat4(1.0f), glm::radians(90.0f), glm::vec3(1.0f, 0.0f, 0.0f)), + // POSITIVE_Z + glm::rotate(glm::mat4(1.0f), glm::radians(180.0f), glm::vec3(1.0f, 0.0f, 0.0f)), + // NEGATIVE_Z + glm::rotate(glm::mat4(1.0f), glm::radians(180.0f), glm::vec3(0.0f, 0.0f, 1.0f)), + }; + VkCommandBuffer cmdBuf = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); + + VkViewport viewport = vks::initializers::viewport((float)dim, (float)dim, 0.0f, 1.0f); + VkRect2D scissor = vks::initializers::rect2D(dim, dim, 0, 0); + + vkCmdSetViewport(cmdBuf, 0, 1, &viewport); + vkCmdSetScissor(cmdBuf, 0, 1, &scissor); + + VkImageSubresourceRange subresourceRange = {}; + subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; + subresourceRange.baseMipLevel = 0; + subresourceRange.levelCount = numMips; + subresourceRange.layerCount = 6; + + vks::tools::setImageLayout( + cmdBuf, + ibltextures.prefilteredCube.image, + VK_IMAGE_LAYOUT_UNDEFINED, + VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, + subresourceRange); + + for (uint32_t m = 0; m < numMips; ++m) + { + //mip level according to roughness + pushBlock.roughness = float(m) / float(numMips - 1); + for (uint32_t f = 0; f < 6; ++f) + { + viewport.width = static_cast(dim * std::pow(0.5f, m)); + viewport.height = static_cast(dim * std::pow(0.5f, m)); + vkCmdSetViewport(cmdBuf, 0, 1, &viewport); + // Render scene from cube face's point of view + vkCmdBeginRenderPass(cmdBuf, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); + + // Update shader push constant block + pushBlock.mvp = glm::perspective((float)(M_PI / 2.0), 1.0f, 0.1f, 512.0f) * matrices[f]; + + vkCmdPushConstants(cmdBuf, pipelinelayout, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0, sizeof(PushBlock), &pushBlock); + vkCmdBindPipeline(cmdBuf, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline); + vkCmdBindDescriptorSets(cmdBuf, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelinelayout, 0, 1, &descriptorset, 0, nullptr); + skyboxModel.draw(cmdBuf, pipelinelayout, false); + vkCmdEndRenderPass(cmdBuf); + + vks::tools::setImageLayout( + cmdBuf, + offscreen.image, + VK_IMAGE_ASPECT_COLOR_BIT, + VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, + VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL); + + VkImageCopy copyRegion{}; + copyRegion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; + copyRegion.srcSubresource.baseArrayLayer = 0; + copyRegion.srcSubresource.mipLevel = 0; + copyRegion.srcSubresource.layerCount = 1; + copyRegion.srcOffset = { 0, 0, 0 }; + + copyRegion.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; + copyRegion.dstSubresource.baseArrayLayer = f; + copyRegion.dstSubresource.mipLevel = m; + copyRegion.dstSubresource.layerCount = 1; + copyRegion.dstOffset = { 0, 0, 0 }; + + copyRegion.extent.width = static_cast(viewport.width); + copyRegion.extent.height = static_cast(viewport.height); + copyRegion.extent.depth = 1; + + vkCmdCopyImage( + cmdBuf, + offscreen.image, + VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, + ibltextures.prefilteredCube.image, + VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, + 1, + ©Region); + + //Reset frame buffer image layout + vks::tools::setImageLayout( + cmdBuf, + offscreen.image, + VK_IMAGE_ASPECT_COLOR_BIT, + VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, + VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL); + } + } + + //Set format shader read + vks::tools::setImageLayout( + cmdBuf, + ibltextures.prefilteredCube.image, + VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, + VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, + subresourceRange); + + vulkanDevice->flushCommandBuffer(cmdBuf, queue); + + vkDestroyRenderPass(device, renderpass, nullptr); + vkDestroyFramebuffer(device, offscreen.framebuffer, nullptr); + vkFreeMemory(device, offscreen.memory, nullptr); + vkDestroyImageView(device, offscreen.view, nullptr); + vkDestroyImage(device, offscreen.image, nullptr); + vkDestroyDescriptorPool(device, descriptorpool, nullptr); + vkDestroyDescriptorSetLayout(device, descriptorsetlayout, nullptr); + vkDestroyPipeline(device, pipeline, nullptr); + vkDestroyPipelineLayout(device, pipelinelayout, nullptr); + + auto tEnd = std::chrono::high_resolution_clock::now(); + auto tDiff = std::chrono::duration(tEnd - tStart).count(); + std::cout << "Generating pre-filtered enivornment cube with " << numMips << " mip levels took " << tDiff << " ms" << std::endl; +} + + void VulkanExample::GenerateBRDFLUT() + { + auto tStart = std::chrono::high_resolution_clock::now(); + + constexpr VkFormat format = VK_FORMAT_R16G16_SFLOAT; + constexpr int32_t dim = 512; + + // Image + VkImageCreateInfo imageCI = vks::initializers::imageCreateInfo(); + imageCI.imageType = VK_IMAGE_TYPE_2D; + imageCI.format = format; + imageCI.extent.width = dim; + imageCI.extent.height = dim; + imageCI.extent.depth = 1; + imageCI.mipLevels = 1; + imageCI.arrayLayers = 1; + imageCI.samples = VK_SAMPLE_COUNT_1_BIT; + imageCI.tiling = VK_IMAGE_TILING_OPTIMAL; + imageCI.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_SAMPLED_BIT; + VK_CHECK_RESULT(vkCreateImage(device, &imageCI, nullptr, &ibltextures.lutBrdf.image)); + VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo(); + VkMemoryRequirements memReqs; + vkGetImageMemoryRequirements(device, ibltextures.lutBrdf.image, &memReqs); + memAlloc.allocationSize = memReqs.size; + memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); + VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &ibltextures.lutBrdf.deviceMemory)); + VK_CHECK_RESULT(vkBindImageMemory(device, ibltextures.lutBrdf.image, ibltextures.lutBrdf.deviceMemory, 0)); + + // Image view + VkImageViewCreateInfo viewCI = vks::initializers::imageViewCreateInfo(); + viewCI.viewType = VK_IMAGE_VIEW_TYPE_2D; + viewCI.format = format; + viewCI.subresourceRange = {}; + viewCI.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; + viewCI.subresourceRange.levelCount = 1; + viewCI.subresourceRange.layerCount = 1; + viewCI.image = ibltextures.lutBrdf.image; + VK_CHECK_RESULT(vkCreateImageView(device, &viewCI, nullptr, &ibltextures.lutBrdf.view)); + + // Sampler + VkSamplerCreateInfo samplerCI = vks::initializers::samplerCreateInfo(); + samplerCI.magFilter = VK_FILTER_LINEAR; + samplerCI.minFilter = VK_FILTER_LINEAR; + samplerCI.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; + samplerCI.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; + samplerCI.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; + samplerCI.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; + samplerCI.minLod = 0.0f; + samplerCI.maxLod = 1.0f; + samplerCI.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE; + VK_CHECK_RESULT(vkCreateSampler(device, &samplerCI, nullptr, &ibltextures.lutBrdf.sampler)); + + ibltextures.lutBrdf.descriptor.imageView = ibltextures.lutBrdf.view; + ibltextures.lutBrdf.descriptor.sampler = ibltextures.lutBrdf.sampler; + ibltextures.lutBrdf.descriptor.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; + ibltextures.lutBrdf.device = vulkanDevice; + + // FB, Att, RP, Pipe, etc. + VkAttachmentDescription attDesc = {}; + // Color attachment + attDesc.format = format; + attDesc.samples = VK_SAMPLE_COUNT_1_BIT; + attDesc.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; + attDesc.storeOp = VK_ATTACHMENT_STORE_OP_STORE; + attDesc.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; + attDesc.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; + attDesc.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; + attDesc.finalLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; + VkAttachmentReference colorReference = { 0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL }; + + VkSubpassDescription subpassDescription = {}; + subpassDescription.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; + subpassDescription.colorAttachmentCount = 1; + subpassDescription.pColorAttachments = &colorReference; + + // Use subpass dependencies for layout transitions + std::array dependencies; + dependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL; + dependencies[0].dstSubpass = 0; + dependencies[0].srcStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT; + dependencies[0].dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; + dependencies[0].srcAccessMask = VK_ACCESS_MEMORY_READ_BIT; + dependencies[0].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; + dependencies[0].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT; + dependencies[1].srcSubpass = 0; + dependencies[1].dstSubpass = VK_SUBPASS_EXTERNAL; + dependencies[1].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; + dependencies[1].dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT; + dependencies[1].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; + dependencies[1].dstAccessMask = VK_ACCESS_MEMORY_READ_BIT; + dependencies[1].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT; + + // Create the actual renderpass + VkRenderPassCreateInfo renderPassCI = vks::initializers::renderPassCreateInfo(); + renderPassCI.attachmentCount = 1; + renderPassCI.pAttachments = &attDesc; + renderPassCI.subpassCount = 1; + renderPassCI.pSubpasses = &subpassDescription; + renderPassCI.dependencyCount = 2; + renderPassCI.pDependencies = dependencies.data(); + + VkRenderPass renderpass; + VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassCI, nullptr, &renderpass)); + + VkFramebufferCreateInfo framebufferCI = vks::initializers::framebufferCreateInfo(); + framebufferCI.renderPass = renderpass; + framebufferCI.attachmentCount = 1; + framebufferCI.pAttachments = &ibltextures.lutBrdf.view; + framebufferCI.width = dim; + framebufferCI.height = dim; + framebufferCI.layers = 1; + + VkFramebuffer framebuffer; + VK_CHECK_RESULT(vkCreateFramebuffer(device, &framebufferCI, nullptr, &framebuffer)); + + // Descriptors + VkDescriptorSetLayout descriptorsetlayout; + std::vector setLayoutBindings = {}; + VkDescriptorSetLayoutCreateInfo descriptorsetlayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings); + VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorsetlayoutCI, nullptr, &descriptorsetlayout)); + + // Descriptor Pool + std::vector poolSizes = { vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1) }; + VkDescriptorPoolCreateInfo descriptorPoolCI = vks::initializers::descriptorPoolCreateInfo(poolSizes, 2); + VkDescriptorPool descriptorpool; + VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolCI, nullptr, &descriptorpool)); + + // Descriptor sets + VkDescriptorSet descriptorset; + VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorpool, &descriptorsetlayout, 1); + VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorset)); + + // Pipeline layout + VkPipelineLayout pipelinelayout; + VkPipelineLayoutCreateInfo pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(&descriptorsetlayout, 1); + VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelinelayout)); + + // Pipeline + VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); + VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE); + VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE); + VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState); + VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_FALSE, VK_FALSE, VK_COMPARE_OP_LESS_OR_EQUAL); + VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1); + VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT); + std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; + VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables); + VkPipelineVertexInputStateCreateInfo emptyInputState = vks::initializers::pipelineVertexInputStateCreateInfo(); + std::array shaderStages; + + VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelinelayout, renderpass); + pipelineCI.pInputAssemblyState = &inputAssemblyState; + pipelineCI.pRasterizationState = &rasterizationState; + pipelineCI.pColorBlendState = &colorBlendState; + pipelineCI.pMultisampleState = &multisampleState; + pipelineCI.pViewportState = &viewportState; + pipelineCI.pDepthStencilState = &depthStencilState; + pipelineCI.pDynamicState = &dynamicState; + pipelineCI.stageCount = 2; + pipelineCI.pStages = shaderStages.data(); + pipelineCI.pVertexInputState = &emptyInputState; + + // Look-up-table (from BRDF) pipeline + shaderStages[0] = loadShader(getHomeworkShadersPath() + "homework1/genbrdflut.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); + shaderStages[1] = loadShader(getHomeworkShadersPath() + "homework1/genbrdflut.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); + VkPipeline pipeline; + VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipeline)); + + // Render + VkClearValue clearValues[1]; + clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 1.0f } }; + + VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); + renderPassBeginInfo.renderPass = renderpass; + renderPassBeginInfo.renderArea.extent.width = dim; + renderPassBeginInfo.renderArea.extent.height = dim; + renderPassBeginInfo.clearValueCount = 1; + renderPassBeginInfo.pClearValues = clearValues; + renderPassBeginInfo.framebuffer = framebuffer; + + VkCommandBuffer cmdBuf = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); + vkCmdBeginRenderPass(cmdBuf, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); + VkViewport viewport = vks::initializers::viewport((float)dim, (float)dim, 0.0f, 1.0f); + VkRect2D scissor = vks::initializers::rect2D(dim, dim, 0, 0); + vkCmdSetViewport(cmdBuf, 0, 1, &viewport); + vkCmdSetScissor(cmdBuf, 0, 1, &scissor); + vkCmdBindPipeline(cmdBuf, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline); + vkCmdDraw(cmdBuf, 3, 1, 0, 0); + vkCmdEndRenderPass(cmdBuf); + vulkanDevice->flushCommandBuffer(cmdBuf, queue); + + vkQueueWaitIdle(queue); + + vkDestroyPipeline(device, pipeline, nullptr); + vkDestroyPipelineLayout(device, pipelinelayout, nullptr); + vkDestroyRenderPass(device, renderpass, nullptr); + vkDestroyFramebuffer(device, framebuffer, nullptr); + vkDestroyDescriptorSetLayout(device, descriptorsetlayout, nullptr); + vkDestroyDescriptorPool(device, descriptorpool, nullptr); + + auto tEnd = std::chrono::high_resolution_clock::now(); + auto tDiff = std::chrono::duration(tEnd - tStart).count(); + std::cout << "Generating BRDF LUT took " << tDiff << " ms" << std::endl; + } + //----------------------------End Precompute brick------------------------------------------------------------------// +#pragma region pbr render pass setting + + void VulkanExample::createAttachment( + VkFormat format, + VkImageUsageFlagBits usage, + FrameBufferAttachment* attachment, + uint32_t width, + uint32_t height) + { + VkImageAspectFlags aspectMask = 0; + VkImageUsageFlags imageUsage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT; + attachment->format = format; + if (usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) + { + aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; + imageUsage |= VK_IMAGE_USAGE_SAMPLED_BIT; + } + if (usage & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) + { + aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT; + if (format >= VK_FORMAT_D16_UNORM_S8_UINT) + aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT; + } + + assert(aspectMask > 0); + + VkImageCreateInfo image = vks::initializers::imageCreateInfo(); + image.imageType = VK_IMAGE_TYPE_2D; + image.format = format; + image.extent.width = width; + image.extent.height = height; + image.extent.depth = 1; + image.mipLevels = 1; + image.arrayLayers = 1; + image.samples = VK_SAMPLE_COUNT_1_BIT; + image.tiling = VK_IMAGE_TILING_OPTIMAL; + image.usage = imageUsage | usage; + + VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo(); + VkMemoryRequirements memReqs; + + VK_CHECK_RESULT(vkCreateImage(device, &image, nullptr, &attachment->image)); + vkGetImageMemoryRequirements(device, attachment->image, &memReqs); + memAlloc.allocationSize = memReqs.size; + memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); + VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &attachment->deviceMemory)); + VK_CHECK_RESULT(vkBindImageMemory(device, attachment->image, attachment->deviceMemory, 0)); + + VkImageViewCreateInfo imageView = vks::initializers::imageViewCreateInfo(); + imageView.viewType = VK_IMAGE_VIEW_TYPE_2D; + imageView.format = format; + imageView.subresourceRange = {}; + imageView.subresourceRange.aspectMask = aspectMask; + imageView.subresourceRange.baseMipLevel = 0; + imageView.subresourceRange.levelCount = 1; + imageView.subresourceRange.baseArrayLayer = 0; + imageView.subresourceRange.layerCount = 1; + imageView.image = attachment->image; + VK_CHECK_RESULT(vkCreateImageView(device, &imageView, nullptr, &attachment->imageView)); + } + +#pragma endregion // Prepare and initialize uniform buffer containing shader uniforms void prepareUniformBuffers() { @@ -707,8 +2050,25 @@ public: &shaderData.buffer, sizeof(shaderData.values))); + VK_CHECK_RESULT(vulkanDevice->createBuffer( + VK_BUFFER_USAGE_STORAGE_BUFFER_BIT, + VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, + &shaderData.skinSSBO, + sizeof(glm::mat4) * glTFModel.nodeCount)); + // Map persistent VK_CHECK_RESULT(shaderData.buffer.map()); + VK_CHECK_RESULT(shaderData.skinSSBO.map()); + + for (auto& material : glTFModel.materials) + { + VK_CHECK_RESULT(vulkanDevice->createBuffer( + VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, + VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, + &material.materialData.buffer, + sizeof(VulkanglTFModel::MaterialData::Values), + &material.materialData.values)); + } updateUniformBuffers(); } @@ -718,6 +2078,8 @@ public: shaderData.values.projection = camera.matrices.perspective; shaderData.values.model = camera.matrices.view; shaderData.values.viewPos = camera.viewPos; + shaderData.values.bFlagSet.x = normalMapping; + shaderData.values.bFlagSet.y = pbrEnabled; memcpy(shaderData.buffer.mapped, &shaderData.values, sizeof(shaderData.values)); } @@ -725,6 +2087,9 @@ public: { VulkanExampleBase::prepare(); loadAssets(); + GenerateBRDFLUT(); + GenerateIrradianceCubemap(); + GeneratePrefilteredCubemap(); prepareUniformBuffers(); setupDescriptors(); preparePipelines(); @@ -738,6 +2103,8 @@ public: if (camera.updated) { updateUniformBuffers(); } + if(!paused) + glTFModel.updateAnimation(frameTimer, shaderData.skinSSBO); } virtual void viewChanged() @@ -751,6 +2118,20 @@ public: if (overlay->checkBox("Wireframe", &wireframe)) { buildCommandBuffers(); } + if (overlay->checkBox("NormalMapping", &normalMapping)) + { + } + if (overlay->checkBox("ToneMapping", &ToneMapping)) + { + CreateToneMappingPipeline(); + } + if (overlay->checkBox("PbrIndirect", &pbrEnabled)) + { + } + } + if (overlay->header("Animation")) + { + overlay->checkBox("Pause", &paused); } } }; diff --git a/homework/homework1/homework1.h b/homework/homework1/homework1.h new file mode 100644 index 0000000..1385b9c --- /dev/null +++ b/homework/homework1/homework1.h @@ -0,0 +1,404 @@ + +#include +#include +#include +#include +#include + +#define GLM_FORCE_RADIANS +#define GLM_FORCE_DEPTH_ZERO_TO_ONE +#include +#include +#include + +#define TINYGLTF_IMPLEMENTATION +#define STB_IMAGE_IMPLEMENTATION +#define TINYGLTF_NO_STB_IMAGE_WRITE + +#ifdef VK_USE_PLATFORM_ANDROID_KHR + #define TINYGLTF_ANDROID_LOAD_FROM_ASSETS +#endif +#include "tiny_gltf.h" + +#include "vulkanexamplebase.h" + +#define ENABLE_VALIDATION false + + +// Contains everything required to render a glTF model in Vulkan +// This class is heavily simplified (compared to glTF's feature set) but retains the basic glTF structure +class VulkanglTFModel +{ +public: + // The class requires some Vulkan objects so it can create it's own resources + vks::VulkanDevice* vulkanDevice; + VkQueue copyQueue; + uint32_t nodeCount; + + // The vertex layout for the samples' model + struct Vertex { + glm::vec3 pos; + glm::vec3 normal; + glm::vec2 uv; + glm::vec3 color; + glm::vec3 tangent; + glm::vec3 jointIndices; + glm::vec3 jointWeights; + }; + + // Single vertex buffer for all primitives + struct Vertices { + VkBuffer buffer; + VkDeviceMemory memory; + } vertices; + + // Single index buffer for all primitives + struct Indices { + int count; + VkBuffer buffer; + VkDeviceMemory memory; + } indices; + + // The following structures roughly represent the glTF scene structure + // To keep things simple, they only contain those properties that are required for this sample + struct Node; + + // A primitive contains the data for a single draw call + struct Primitive { + uint32_t firstIndex; + uint32_t indexCount; + int32_t materialIndex; + }; + + // Contains the node's (optional) geometry and can be made up of an arbitrary number of primitives + struct Mesh { + std::vector primitives; + }; + + // A node represents an object in the glTF scene graph + struct Node { + Node* parent; + uint32_t index; + std::vector children; + Mesh mesh; + glm::vec3 translation{}; + glm::vec3 scale{ 1.0f }; + glm::quat rotation{}; + int32_t skin = -1; + glm::mat4 getLocalMatrix() + { + return bAnimateNode ? glm::translate(glm::mat4(1.0f), translation) * glm::mat4(rotation) * glm::scale(glm::mat4(1.0f), scale) : matrix; + } + glm::mat4 matrix; + bool bAnimateNode = false; + + ~Node() { + for (auto& child : children) { + delete child; + }; + } + + + + }; + // material data for pbr + struct MaterialData + { + vks::Buffer buffer; + VkDescriptorSet descriptorSet; + struct Values + { + glm::vec3 emissiveFactor; + glm::vec4 baseColorFactor; + }values; + + }; + // A glTF material stores information in e.g. the texture that is attached to it and colors + struct Material { + glm::vec4 baseColorFactor = glm::vec4(1.0f); + uint32_t baseColorTextureIndex; + uint32_t normalMapTextureIndex; + uint32_t matalicRoughTextureIndex; + int32_t emissiveTextureIndex = -1; + MaterialData materialData; + }; + + // Contains the texture for a single glTF image + // Images may be reused by texture objects and are as such separated + struct Image { + vks::Texture2D texture; + // We also store (and create) a descriptor set that's used to access this texture from the fragment shader + VkDescriptorSet descriptorSet; + }; + + // A glTF texture stores a reference to the image and a sampler + // In this sample, we are only interested in the image + struct Texture { + int32_t imageIndex; + }; + + // structure of skin + struct Skin { + std::string name; + Node* skeletonRoot = nullptr; + std::vector inverseBindMatrices; + std::vector joints; + vks::Buffer ssbo; + VkDescriptorSet descriptorSet; + + }; + + struct AnimationSampler + { + std::string interpolation; + std::vector inputs; + std::vector outputsVec4; + + }; + + struct AnimationChannel + { + std::string path; + Node* node; + uint32_t samplerIndex; + + }; + + struct Animation + { + std::string name; + std::vector samplers; + std::vector channels; + + float start = std::numeric_limits::max(); + float end = std::numeric_limits::min(); + float currentTime = 0.0f; + }; + + /* + Model data + */ + std::vector images; + std::vector textures; + std::vector materials; + std::vector nodes; + std::vector skins; + std::vector animations; + + uint32_t activeAnimation = 0; + + + + //VulkanglTFModel(); + ~VulkanglTFModel() + { + for (auto node : nodes) { + delete node; + } + // Release all Vulkan resources allocated for the model + vkDestroyBuffer(vulkanDevice->logicalDevice, vertices.buffer, nullptr); + vkFreeMemory(vulkanDevice->logicalDevice, vertices.memory, nullptr); + vkDestroyBuffer(vulkanDevice->logicalDevice, indices.buffer, nullptr); + vkFreeMemory(vulkanDevice->logicalDevice, indices.memory, nullptr); + for (auto& material : materials) + { + material.materialData.buffer.destroy(); + } + for (Image image : images) { + vkDestroyImageView(vulkanDevice->logicalDevice, image.texture.view, nullptr); + vkDestroyImage(vulkanDevice->logicalDevice, image.texture.image, nullptr); + vkDestroySampler(vulkanDevice->logicalDevice, image.texture.sampler, nullptr); + vkFreeMemory(vulkanDevice->logicalDevice, image.texture.deviceMemory, nullptr); + } + } + void loadImages(tinygltf::Model& input); + void loadTextures(tinygltf::Model& input); + void loadMaterials(tinygltf::Model& input); + Node* findNode(Node* parent, uint32_t index); + Node* nodeFromIndex(uint32_t index); + //void loadSkins(tinygltf::Model& input); + void loadAnimations(tinygltf::Model& input); + void loadNode(const tinygltf::Node& inputNode, const tinygltf::Model& input, VulkanglTFModel::Node* parent, uint32_t nodeIndex, std::vector& indexBuffer, std::vector& vertexBuffer); + glm::mat4 getNodeMatrix(VulkanglTFModel::Node* node); + void updateNodeMatrix(Node* node, std::vector& nodeMatrics); + //void updateJoints(VulkanglTFModel::Node* node); + void updateAnimation(float deltaTime, vks::Buffer& buffer); + void drawNode(VkCommandBuffer commandBuffer, VkPipelineLayout pipelineLayout, VulkanglTFModel::Node* node, bool bPushConstants); + void draw(VkCommandBuffer commandBuffer, VkPipelineLayout pipelineLayout, bool flag); +}; + +class VulkanExample : public VulkanExampleBase +{ +public: + bool wireframe = false; + bool normalMapping = true; + bool ToneMapping = true; + bool pbrEnabled = true; + + VulkanglTFModel glTFModel; + + struct ShaderData { + vks::Buffer buffer; + struct Values { + glm::mat4 projection; + glm::mat4 model; + glm::vec4 lightPos = glm::vec4(5.0f, 5.0f, 5.0f, 1.0f); + glm::vec4 viewPos; + glm::vec4 bFlagSet = glm::vec4(0.0f, 0.0f, 0.0f, 0.0f); + } values; + vks::Buffer skinSSBO; + } shaderData; + + struct StagingBuffer { + VkBuffer buffer; + VkDeviceMemory memory; + } vertexStaging, indexStaging; + + struct Pipelines { + VkPipeline solid; + VkPipeline wireframe = VK_NULL_HANDLE; + VkPipeline toneMapping = VK_NULL_HANDLE; + } pipelines; + + struct PipelineLayouts + { + VkPipelineLayout pbrLayout; + VkPipelineLayout tonemappingLayout; + } pipelineLayouts; + + VkPipelineLayout pipelineLayout; + + VkDescriptorSet descriptorSet; + VkDescriptorSet skinDescriptorSet; + VkDescriptorSet tonemappingDescriptorSet = VK_NULL_HANDLE; + + struct FrameBufferAttachment + { + VkImage image; + VkDeviceMemory deviceMemory; + VkImageView imageView; + VkFormat format; + + + void destroy(VkDevice device) + { + vkDestroyImage(device, image, nullptr); + vkDestroyImageView(device, imageView,nullptr); + vkFreeMemory(device, deviceMemory, nullptr); + + } + }; + + struct FrameBuffer + { + int32_t width, height; + VkFramebuffer frameBuffer; + VkRenderPass renderPass; + void setSize(int32_t w, int32_t h) + { + this->width = w; + this->height = h; + } + void destroy(VkDevice device) + { + vkDestroyFramebuffer(device, frameBuffer, nullptr); + vkDestroyRenderPass(device, renderPass, nullptr); + } + }; + + struct PBRFrameBuffer { + FrameBufferAttachment color, depth; + FrameBuffer fbo; + bool bCreate = false; + } pbrFrameBuffer; + + VkSampler colorSampler; + + struct DescriptorSetLayouts { + VkDescriptorSetLayout matrices; + VkDescriptorSetLayout textures; + VkDescriptorSetLayout materialUniform; + VkDescriptorSetLayout ssbo; + VkDescriptorSetLayout jointMatrices; + } descriptorSetLayouts; + + struct IBLTextures + { + vks::TextureCubeMap skyboxCube; + vks::TextureCubeMap irradianceCube; + vks::TextureCubeMap prefilteredCube; + vks::Texture2D lutBrdf; + } ibltextures; + + struct OffScreen + { + VkImage image; + VkImageView view; + VkDeviceMemory memory; + VkFramebuffer framebuffer; + } offscreen; + + struct IrradiancePushBlock + { + glm::mat4 mvp; + // Sampling deltas + float deltaPhi = (2.0f * float(M_PI)) / 180.0f; + float deltaTheta = (0.5f * float(M_PI)) / 64.0f; + } irradiancePushBlock; + + struct PrefilterPushBlock { + glm::mat4 mvp; + float roughness; + uint32_t numSamples = 32u; + } prefilterPushBlock; + + VulkanglTFModel skyboxModel; + + VulkanExample(); + ~VulkanExample() + { + // Clean up used Vulkan resources + // Note : Inherited destructor cleans up resources stored in base class + vkDestroyPipeline(device, pipelines.solid, nullptr); + vkDestroyPipeline(device, pipelines.toneMapping, nullptr); + if (pipelines.wireframe != VK_NULL_HANDLE) { + vkDestroyPipeline(device, pipelines.wireframe, nullptr); + } + + vkDestroyPipelineLayout(device, pipelineLayouts.pbrLayout, nullptr); + vkDestroyPipelineLayout(device, pipelineLayouts.tonemappingLayout, nullptr); + vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.matrices, nullptr); + vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.textures, nullptr); + vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.materialUniform, nullptr); + vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.ssbo, nullptr); + ibltextures.irradianceCube.destroy(); + ibltextures.skyboxCube.destroy(); + ibltextures.prefilteredCube.destroy(); + ibltextures.lutBrdf.destroy(); + pbrFrameBuffer.color.destroy(device); + pbrFrameBuffer.depth.destroy(device); + pbrFrameBuffer.fbo.destroy(device); + vkDestroySampler(device, colorSampler, nullptr); + + shaderData.buffer.destroy(); + shaderData.skinSSBO.destroy(); + } + void loadglTFFile(std::string filename, VulkanglTFModel& model, bool bSkyboxFlag); + virtual void getEnabledFeatures(); + void createAttachment(VkFormat format, VkImageUsageFlagBits usage, FrameBufferAttachment* attachment, uint32_t width, uint32_t height); + virtual void setupFrameBuffer(); + void buildCommandBuffers(); + void loadAssets(); + void setupDescriptors(); + void preparePipelines(); + void CreateToneMappingPipeline(); + void GenerateIrradianceCubemap(); + void GeneratePrefilteredCubemap(); + void GenerateBRDFLUT(); + void prepareUniformBuffers(); + void updateUniformBuffers(); + void prepare(); + virtual void render(); + virtual void viewChanged(); + virtual void OnUpdateUIOverlay(vks::UIOverlay* overlay); +}; \ No newline at end of file