reconstruct gltf model loader (no complete yet)

pull/2/head
InkSoul 2023-06-03 00:12:13 +08:00
parent 293e5a6d28
commit e7d9f78252
2 changed files with 656 additions and 158 deletions

View File

@ -1,8 +1,16 @@
#pragma once
#define TINYGLTF_IMPLEMENTATION
#define STB_IMAGE_IMPLEMENTATION
#define TINYGLTF_NO_STB_IMAGE_WRITE
#include "glTFModel.h"
VkDescriptorSetLayout glTFModel::descriptorSetLayoutImage = VK_NULL_HANDLE;
VkDescriptorSetLayout glTFModel::descriptorSetLayoutUbo = VK_NULL_HANDLE;
VkMemoryPropertyFlags glTFModel::memoryPropertyFlags = 0;
uint32_t glTFModel::descriptorBindingFlags = glTFModel::DescriptorBindingFlags::ImageBaseColor;
/*
glTF loading functions
@ -10,24 +18,81 @@
The following functions take a glTF input model loaded via tinyglTF and convert all required data into our own structure
*/
void VulkanglTFModel::loadImages(tinygltf::Model& input)
// custom image loading function with tinyglTF
// ktx image as texture
bool loadImageDataFunc(tinygltf::Image* image, const int imageIndex, std::string* error, std::string* warning, int req_width, int req_height, const unsigned char* bytes, int size, void* userData)
{
// Images can be stored inside the glTF (which is the case for the sample model), so instead of directly
// loading them from disk, we fetch them from the glTF loader and upload the buffers
images.resize(input.images.size());
for (size_t i = 0; i < input.images.size(); i++) {
tinygltf::Image& glTFImage = input.images[i];
// Get the image data from the glTF loader
// KTX files will be handled by our own code
if (image->uri.find_last_of(".") != std::string::npos) {
if (image->uri.substr(image->uri.find_last_of(".") + 1) == "ktx") {
return true;
}
}
return tinygltf::LoadImageData(image, imageIndex, error, warning, req_width, req_height, bytes, size, userData);
}
//will be used for samples that don't require images to be loaded
bool loadImageDataFuncEmpty(tinygltf::Image* image, const int imageIndex, std::string* error, std::string* warning, int req_width, int req_height, const unsigned char* bytes, int size, void* userData)
{
// This function will be used for samples that don't require images to be loaded
return true;
}
/*
glTF texture loader
*/
void glTFModel::Texture::updateDescriptor()
{
descriptor.sampler = sampler;
descriptor.imageView = view;
descriptor.imageLayout = imageLayout;
}
void glTFModel::Texture::destroy()
{
if (device)
{
vkDestroyImageView(device->logicalDevice, view, nullptr);
vkDestroyImage(device->logicalDevice, image, nullptr);
vkFreeMemory(device->logicalDevice, deviceMemory, nullptr);
vkDestroySampler(device->logicalDevice, sampler, nullptr);
}
}
void glTFModel::Texture::fromglTfImage(tinygltf::Image& gltfImage, std::string path, vks::VulkanDevice* device, VkQueue copyQueue)
{
this->device = device;
bool isKtx = false;
// Image points to an external ktx file
if (gltfImage.uri.find_last_of(".") != std::string::npos) {
if (gltfImage.uri.substr(gltfImage.uri.find_last_of(".") + 1) == "ktx") {
isKtx = true;
}
}
VkFormat format;
if (!isKtx)
{
// loaded using STB_Image
// Images can be stored inside the glTF (which is the case for the sample model), so instead of directly
// loading them from disk, we fetch them from the glTF loader and upload the buffers
unsigned char* buffer = nullptr;
VkDeviceSize bufferSize = 0;
bool deleteBuffer = false;
// We convert RGB-only images to RGBA, as most devices don't support RGB-formats in Vulkan
if (glTFImage.component == 3) {
bufferSize = glTFImage.width * glTFImage.height * 4;
if (gltfImage.component == 3) {
bufferSize = gltfImage.width * gltfImage.height * 4;
buffer = new unsigned char[bufferSize];
unsigned char* rgba = buffer;
unsigned char* rgb = &glTFImage.image[0];
for (size_t i = 0; i < glTFImage.width * glTFImage.height; ++i) {
unsigned char* rgb = &gltfImage.image[0];
for (size_t i = 0; i < gltfImage.width * gltfImage.height; ++i) {
memcpy(rgba, rgb, sizeof(unsigned char) * 3);
rgba += 4;
rgb += 3;
@ -35,17 +100,340 @@ void VulkanglTFModel::loadImages(tinygltf::Model& input)
deleteBuffer = true;
}
else {
buffer = &glTFImage.image[0];
bufferSize = glTFImage.image.size();
buffer = &gltfImage.image[0];
bufferSize = gltfImage.image.size();
}
// Load texture from image buffer
images[i].texture.fromBuffer(buffer, bufferSize, VK_FORMAT_R8G8B8A8_UNORM, glTFImage.width, glTFImage.height, vulkanDevice, copyQueue);
format = VK_FORMAT_R8G8B8A8_UNORM;
VkFormatProperties formatProperties;
width = gltfImage.width;
height = gltfImage.height;
mipLevels = static_cast<uint32_t>(floor(log2(std::max(width, height))) + 1.0);
vkGetPhysicalDeviceFormatProperties(device->physicalDevice, format, &formatProperties);
assert(formatProperties.optimalTilingFeatures & VK_FORMAT_FEATURE_BLIT_SRC_BIT);
assert(formatProperties.optimalTilingFeatures & VK_FORMAT_FEATURE_BLIT_DST_BIT);
// allocate memry for texture
VkMemoryAllocateInfo memAllocInfo{};
memAllocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
VkMemoryRequirements memReqs{};
VkBuffer stagingBuffer;
VkDeviceMemory stagingMemory;
VkBufferCreateInfo bufferCreateInfo{};
bufferCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufferCreateInfo.size = bufferSize;
bufferCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VK_CHECK_RESULT(vkCreateBuffer(device->logicalDevice, &bufferCreateInfo, nullptr, &stagingBuffer));
vkGetBufferMemoryRequirements(device->logicalDevice, stagingBuffer, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
memAllocInfo.memoryTypeIndex = device->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device->logicalDevice, &memAllocInfo, nullptr, &stagingMemory));
VK_CHECK_RESULT(vkBindBufferMemory(device->logicalDevice, stagingBuffer, stagingMemory, 0));
uint8_t* data;
VK_CHECK_RESULT(vkMapMemory(device->logicalDevice, stagingMemory, 0, memReqs.size, 0, (void**)&data));
memcpy(data, buffer, bufferSize);
vkUnmapMemory(device->logicalDevice, stagingMemory);
VkImageCreateInfo imageCreateInfo{};
imageCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.mipLevels = mipLevels;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageCreateInfo.extent = { width, height, 1 };
imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
VK_CHECK_RESULT(vkCreateImage(device->logicalDevice, &imageCreateInfo, nullptr, &image));
vkGetImageMemoryRequirements(device->logicalDevice, image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
memAllocInfo.memoryTypeIndex = device->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device->logicalDevice, &memAllocInfo, nullptr, &deviceMemory));
VK_CHECK_RESULT(vkBindImageMemory(device->logicalDevice, image, deviceMemory, 0));
VkCommandBuffer copyCmd = device->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
VkImageSubresourceRange subresourceRange = {};
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subresourceRange.levelCount = 1;
subresourceRange.layerCount = 1;
{
VkImageMemoryBarrier imageMemoryBarrier{};
imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
imageMemoryBarrier.srcAccessMask = 0;
imageMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
imageMemoryBarrier.image = image;
imageMemoryBarrier.subresourceRange = subresourceRange;
vkCmdPipelineBarrier(copyCmd, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, 0, 0, nullptr, 0, nullptr, 1, &imageMemoryBarrier);
}
VkBufferImageCopy bufferCopyRegion = {};
bufferCopyRegion.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
bufferCopyRegion.imageSubresource.mipLevel = 0;
bufferCopyRegion.imageSubresource.baseArrayLayer = 0;
bufferCopyRegion.imageSubresource.layerCount = 1;
bufferCopyRegion.imageExtent.width = width;
bufferCopyRegion.imageExtent.height = height;
bufferCopyRegion.imageExtent.depth = 1;
vkCmdCopyBufferToImage(copyCmd, stagingBuffer, image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &bufferCopyRegion);
{
VkImageMemoryBarrier imageMemoryBarrier{};
imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
imageMemoryBarrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
imageMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
imageMemoryBarrier.image = image;
imageMemoryBarrier.subresourceRange = subresourceRange;
vkCmdPipelineBarrier(copyCmd, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, 0, 0, nullptr, 0, nullptr, 1, &imageMemoryBarrier);
}
device->flushCommandBuffer(copyCmd, copyQueue, true);
vkFreeMemory(device->logicalDevice, stagingMemory, nullptr);
vkDestroyBuffer(device->logicalDevice, stagingBuffer, nullptr);
// Generate the mip chain (glTF uses jpg and png, so we need to create this manually)
VkCommandBuffer blitCmd = device->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
for (uint32_t i = 1; i < mipLevels; i++) {
VkImageBlit imageBlit{};
imageBlit.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
imageBlit.srcSubresource.layerCount = 1;
imageBlit.srcSubresource.mipLevel = i - 1;
imageBlit.srcOffsets[1].x = int32_t(width >> (i - 1));
imageBlit.srcOffsets[1].y = int32_t(height >> (i - 1));
imageBlit.srcOffsets[1].z = 1;
imageBlit.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
imageBlit.dstSubresource.layerCount = 1;
imageBlit.dstSubresource.mipLevel = i;
imageBlit.dstOffsets[1].x = int32_t(width >> i);
imageBlit.dstOffsets[1].y = int32_t(height >> i);
imageBlit.dstOffsets[1].z = 1;
VkImageSubresourceRange mipSubRange = {};
mipSubRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
mipSubRange.baseMipLevel = i;
mipSubRange.levelCount = 1;
mipSubRange.layerCount = 1;
{
VkImageMemoryBarrier imageMemoryBarrier{};
imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
imageMemoryBarrier.srcAccessMask = 0;
imageMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
imageMemoryBarrier.image = image;
imageMemoryBarrier.subresourceRange = mipSubRange;
vkCmdPipelineBarrier(blitCmd, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, nullptr, 0, nullptr, 1, &imageMemoryBarrier);
}
vkCmdBlitImage(blitCmd, image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &imageBlit, VK_FILTER_LINEAR);
{
VkImageMemoryBarrier imageMemoryBarrier{};
imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
imageMemoryBarrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
imageMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
imageMemoryBarrier.image = image;
imageMemoryBarrier.subresourceRange = mipSubRange;
vkCmdPipelineBarrier(blitCmd, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, nullptr, 0, nullptr, 1, &imageMemoryBarrier);
}
}
subresourceRange.levelCount = mipLevels;
imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
{
VkImageMemoryBarrier imageMemoryBarrier{};
imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
imageMemoryBarrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
imageMemoryBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
imageMemoryBarrier.image = image;
imageMemoryBarrier.subresourceRange = subresourceRange;
vkCmdPipelineBarrier(blitCmd, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, 0, 0, nullptr, 0, nullptr, 1, &imageMemoryBarrier);
}
if (deleteBuffer) {
delete[] buffer;
}
device->flushCommandBuffer(blitCmd, copyQueue, true);
}
else {
// Texture is stored in an external ktx file
std::string filename = path + "/" + gltfImage.uri;
ktxTexture* ktxTexture;
ktxResult result = KTX_SUCCESS;
#if defined(__ANDROID__)
AAsset* asset = AAssetManager_open(androidApp->activity->assetManager, filename.c_str(), AASSET_MODE_STREAMING);
if (!asset) {
vks::tools::exitFatal("Could not load texture from " + filename + "\n\nThe file may be part of the additional asset pack.\n\nRun \"download_assets.py\" in the repository root to download the latest version.", -1);
}
size_t size = AAsset_getLength(asset);
assert(size > 0);
ktx_uint8_t* textureData = new ktx_uint8_t[size];
AAsset_read(asset, textureData, size);
AAsset_close(asset);
result = ktxTexture_CreateFromMemory(textureData, size, KTX_TEXTURE_CREATE_LOAD_IMAGE_DATA_BIT, &ktxTexture);
delete[] textureData;
#else
if (!vks::tools::fileExists(filename)) {
vks::tools::exitFatal("Could not load texture from " + filename + "\n\nThe file may be part of the additional asset pack.\n\nRun \"download_assets.py\" in the repository root to download the latest version.", -1);
}
result = ktxTexture_CreateFromNamedFile(filename.c_str(), KTX_TEXTURE_CREATE_LOAD_IMAGE_DATA_BIT, &ktxTexture);
#endif
assert(result == KTX_SUCCESS);
this->device = device;
width = ktxTexture->baseWidth;
height = ktxTexture->baseHeight;
mipLevels = ktxTexture->numLevels;
ktx_uint8_t* ktxTextureData = ktxTexture_GetData(ktxTexture);
ktx_size_t ktxTextureSize = ktxTexture_GetSize(ktxTexture);
// @todo: Use ktxTexture_GetVkFormat(ktxTexture)
format = VK_FORMAT_R8G8B8A8_UNORM;
// Get device properties for the requested texture format
VkFormatProperties formatProperties;
vkGetPhysicalDeviceFormatProperties(device->physicalDevice, format, &formatProperties);
VkCommandBuffer copyCmd = device->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
VkBuffer stagingBuffer;
VkDeviceMemory stagingMemory;
VkBufferCreateInfo bufferCreateInfo = vks::initializers::bufferCreateInfo();
bufferCreateInfo.size = ktxTextureSize;
// This buffer is used as a transfer source for the buffer copy
bufferCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VK_CHECK_RESULT(vkCreateBuffer(device->logicalDevice, &bufferCreateInfo, nullptr, &stagingBuffer));
VkMemoryAllocateInfo memAllocInfo = vks::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
vkGetBufferMemoryRequirements(device->logicalDevice, stagingBuffer, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
memAllocInfo.memoryTypeIndex = device->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device->logicalDevice, &memAllocInfo, nullptr, &stagingMemory));
VK_CHECK_RESULT(vkBindBufferMemory(device->logicalDevice, stagingBuffer, stagingMemory, 0));
uint8_t* data;
VK_CHECK_RESULT(vkMapMemory(device->logicalDevice, stagingMemory, 0, memReqs.size, 0, (void**)&data));
memcpy(data, ktxTextureData, ktxTextureSize);
vkUnmapMemory(device->logicalDevice, stagingMemory);
std::vector<VkBufferImageCopy> bufferCopyRegions;
for (uint32_t i = 0; i < mipLevels; i++)
{
ktx_size_t offset;
KTX_error_code result = ktxTexture_GetImageOffset(ktxTexture, i, 0, 0, &offset);
assert(result == KTX_SUCCESS);
VkBufferImageCopy bufferCopyRegion = {};
bufferCopyRegion.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
bufferCopyRegion.imageSubresource.mipLevel = i;
bufferCopyRegion.imageSubresource.baseArrayLayer = 0;
bufferCopyRegion.imageSubresource.layerCount = 1;
bufferCopyRegion.imageExtent.width = std::max(1u, ktxTexture->baseWidth >> i);
bufferCopyRegion.imageExtent.height = std::max(1u, ktxTexture->baseHeight >> i);
bufferCopyRegion.imageExtent.depth = 1;
bufferCopyRegion.bufferOffset = offset;
bufferCopyRegions.push_back(bufferCopyRegion);
}
// Create optimal tiled target image
VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.mipLevels = mipLevels;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageCreateInfo.extent = { width, height, 1 };
imageCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
VK_CHECK_RESULT(vkCreateImage(device->logicalDevice, &imageCreateInfo, nullptr, &image));
vkGetImageMemoryRequirements(device->logicalDevice, image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
memAllocInfo.memoryTypeIndex = device->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device->logicalDevice, &memAllocInfo, nullptr, &deviceMemory));
VK_CHECK_RESULT(vkBindImageMemory(device->logicalDevice, image, deviceMemory, 0));
VkImageSubresourceRange subresourceRange = {};
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subresourceRange.baseMipLevel = 0;
subresourceRange.levelCount = mipLevels;
subresourceRange.layerCount = 1;
vks::tools::setImageLayout(copyCmd, image, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, subresourceRange);
vkCmdCopyBufferToImage(copyCmd, stagingBuffer, image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, static_cast<uint32_t>(bufferCopyRegions.size()), bufferCopyRegions.data());
vks::tools::setImageLayout(copyCmd, image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, subresourceRange);
device->flushCommandBuffer(copyCmd, copyQueue);
this->imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
vkFreeMemory(device->logicalDevice, stagingMemory, nullptr);
vkDestroyBuffer(device->logicalDevice, stagingBuffer, nullptr);
ktxTexture_Destroy(ktxTexture);
}
VkSamplerCreateInfo samplerInfo{};
samplerInfo.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
samplerInfo.magFilter = VK_FILTER_LINEAR;
samplerInfo.minFilter = VK_FILTER_LINEAR;
samplerInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
samplerInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT;
samplerInfo.addressModeV = VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT;
samplerInfo.addressModeW = VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT;
samplerInfo.compareOp = VK_COMPARE_OP_NEVER;
samplerInfo.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
samplerInfo.maxAnisotropy = 1.0;
samplerInfo.anisotropyEnable = VK_FALSE;
samplerInfo.maxLod = (float)mipLevels;
samplerInfo.maxAnisotropy = 8.0f;
samplerInfo.anisotropyEnable = VK_TRUE;
VK_CHECK_RESULT(vkCreateSampler(device->logicalDevice, &samplerInfo, nullptr, &sampler));
VkImageViewCreateInfo viewInfo{};
viewInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
viewInfo.image = image;
viewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
viewInfo.format = format;
viewInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
viewInfo.subresourceRange.layerCount = 1;
viewInfo.subresourceRange.levelCount = mipLevels;
VK_CHECK_RESULT(vkCreateImageView(device->logicalDevice, &viewInfo, nullptr, &view));
descriptor.sampler = sampler;
descriptor.imageView = view;
descriptor.imageLayout = imageLayout;
}
/*
void VulkanglTFModel::loadTextures(tinygltf::Model& input)
{
textures.resize(input.textures.size());
@ -142,7 +530,49 @@ void VulkanglTFModel::loadAnimations(tinygltf::Model& input)
}
}
}
*/
/*
glTF material
*/
void glTFModel::Material::createDescriptorSet(VkDescriptorPool descriptorPool, VkDescriptorSetLayout descriptorSetLayout, uint32_t descriptorBindingFlags)
{
VkDescriptorSetAllocateInfo descriptorSetAllocInfo{};
descriptorSetAllocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
descriptorSetAllocInfo.descriptorPool = descriptorPool;
descriptorSetAllocInfo.pSetLayouts = &descriptorSetLayout;
descriptorSetAllocInfo.descriptorSetCount = 1;
VK_CHECK_RESULT(vkAllocateDescriptorSets(device->logicalDevice, &descriptorSetAllocInfo, &descriptorSet));
std::vector<VkDescriptorImageInfo> imageDescriptors{};
std::vector<VkWriteDescriptorSet> writeDescriptorSets{};
if (descriptorBindingFlags & DescriptorBindingFlags::ImageBaseColor) {
imageDescriptors.push_back(baseColorTexture->descriptor);
VkWriteDescriptorSet writeDescriptorSet{};
writeDescriptorSet.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writeDescriptorSet.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
writeDescriptorSet.descriptorCount = 1;
writeDescriptorSet.dstSet = descriptorSet;
writeDescriptorSet.dstBinding = static_cast<uint32_t>(writeDescriptorSets.size());
writeDescriptorSet.pImageInfo = &baseColorTexture->descriptor;
writeDescriptorSets.push_back(writeDescriptorSet);
}
if (normalTexture && descriptorBindingFlags & DescriptorBindingFlags::ImageNormalMap) {
imageDescriptors.push_back(normalTexture->descriptor);
VkWriteDescriptorSet writeDescriptorSet{};
writeDescriptorSet.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writeDescriptorSet.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
writeDescriptorSet.descriptorCount = 1;
writeDescriptorSet.dstSet = descriptorSet;
writeDescriptorSet.dstBinding = static_cast<uint32_t>(writeDescriptorSets.size());
writeDescriptorSet.pImageInfo = &normalTexture->descriptor;
writeDescriptorSets.push_back(writeDescriptorSet);
}
vkUpdateDescriptorSets(device->logicalDevice, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
}
/*
void VulkanglTFModel::loadMaterials(tinygltf::Model& input)
{
materials.resize(input.materials.size());
@ -179,7 +609,7 @@ void VulkanglTFModel::loadMaterials(tinygltf::Model& input)
}
}
}
*/
void VulkanglTFModel::loadNode(const tinygltf::Node& inputNode, const tinygltf::Model& input, VulkanglTFModel::Node* parent, uint32_t nodeIndex, std::vector<uint32_t>& indexBuffer, std::vector<VulkanglTFModel::Vertex>& vertexBuffer)
{
VulkanglTFModel::Node* node = new VulkanglTFModel::Node{};

View File

@ -23,148 +23,200 @@
#include "tiny_gltf.h"
#include "vulkanexamplebase.h"
#include "VulkanDevice.h"
#include "vulkan/vulkan.h"
#define ENABLE_VALIDATION false
// Contains everything required to render a glTF model in Vulkan
// This class is heavily simplified (compared to glTF's feature set) but retains the basic glTF structure
namespace VulkanglTFModel
namespace glTFModel
{
// The class requires some Vulkan objects so it can create it's own resources
vks::VulkanDevice* vulkanDevice;
VkQueue copyQueue;
uint32_t nodeCount;
enum DescriptorBindingFlags {
ImageBaseColor = 0x00000001,
ImageNormalMap = 0x00000002
};
enum FileLoadingFlags {
None = 0x00000000,
PreTransformVertices = 0x00000001,
PreMultiplyVertexColors = 0x00000002,
FlipY = 0x00000004,
DontLoadImages = 0x00000008
};
enum RenderFlags {
BindImages = 0x00000001,
RenderOpaqueNodes = 0x00000002,
RenderAlphaMaskedNodes = 0x00000004,
RenderAlphaBlendedNodes = 0x00000008
};
extern VkDescriptorSetLayout descriptorSetLayoutImage;
extern VkDescriptorSetLayout descriptorSetLayoutUbo;
extern VkMemoryPropertyFlags memoryPropertyFlags;
extern uint32_t descriptorBindingFlags;
// The vertex layout for the samples' model
struct Vertex {
glm::vec3 pos;
glm::vec3 normal;
glm::vec2 uv;
glm::vec3 color;
glm::vec3 tangent;
glm::vec3 jointIndices;
glm::vec3 jointWeights;
// A glTF texture stores a reference to the image and a sampler
struct Texture {
int32_t imageIndex;
vks::VulkanDevice* device = nullptr;
VkImage image;
VkImageLayout imageLayout;
VkDeviceMemory deviceMemory;
VkImageView view;
uint32_t width, height;
uint32_t mipLevels;
uint32_t layerCount;
VkDescriptorImageInfo descriptor;
VkSampler sampler;
void updateDescriptor();
void destroy();
void fromglTfImage(tinygltf::Image& gltfimage, std::string path, vks::VulkanDevice* device, VkQueue copyQueue);
};
// Single vertex buffer for all primitives
struct Vertices {
VkBuffer buffer;
VkDeviceMemory memory;
} vertices;
// A glTF material stores information in e.g. the texture that is attached to it and colors
struct Material {
vks::VulkanDevice* device = nullptr;
enum AlphaMode { ALPHAMODE_OPAQUE, ALPHAMODE_MASK, ALPHAMODE_BLEND };
AlphaMode alphaMode = ALPHAMODE_OPAQUE;
float alphaCutoff = 1.0f;
float metallicFactor = 1.0f;
float roughnessFactor = 1.0f;
glm::vec4 baseColorFactor = glm::vec4(1.0f);
glTFModel::Texture* baseColorTexture = nullptr;
glTFModel::Texture* metallicRoughnessTexture = nullptr;
glTFModel::Texture* normalTexture = nullptr;
glTFModel::Texture* occlusionTexture = nullptr;
glTFModel::Texture* emissiveTexture = nullptr;
// Single index buffer for all primitives
struct Indices {
int count;
VkBuffer buffer;
VkDeviceMemory memory;
} indices;
glTFModel::Texture* specularGlossinessTexture;
glTFModel::Texture* diffuseTexture;
// The following structures roughly represent the glTF scene structure
// To keep things simple, they only contain those properties that are required for this sample
struct Node;
VkDescriptorSet descriptorSet = VK_NULL_HANDLE;
Material(vks::VulkanDevice* device) : device(device) {};
void createDescriptorSet(VkDescriptorPool descriptorPool, VkDescriptorSetLayout descriptorSetLayout, uint32_t descriptorBindingFlags);
};
// A primitive contains the data for a single draw call
struct Primitive {
uint32_t firstIndex;
uint32_t indexCount;
int32_t materialIndex;
uint32_t firstVertex;
uint32_t vertexCount;
Material& material;
struct Dimensions {
glm::vec3 min = glm::vec3(FLT_MAX);
glm::vec3 max = glm::vec3(-FLT_MAX);
glm::vec3 size;
glm::vec3 center;
float radius;
} dimensions;
void setDimensions(glm::vec3 min, glm::vec3 max);
Primitive(uint32_t firstIndex, uint32_t indexCount, Material& material) : firstIndex(firstIndex), indexCount(indexCount), material(material) {};
};
// Contains the node's (optional) geometry and can be made up of an arbitrary number of primitives
struct Mesh {
std::vector<Primitive> primitives;
};
vks::VulkanDevice* device;
// A node represents an object in the glTF scene graph
struct Node {
Node* parent;
uint32_t index;
std::vector<Node*> children;
Mesh mesh;
glm::vec3 translation{};
glm::vec3 scale{ 1.0f };
glm::quat rotation{};
int32_t skin = -1;
glm::mat4 getLocalMatrix()
{
return bAnimateNode ? glm::translate(glm::mat4(1.0f), translation) * glm::mat4(rotation) * glm::scale(glm::mat4(1.0f), scale) : matrix;
}
glm::mat4 matrix;
bool bAnimateNode = false;
std::vector<Primitive*> primitives;
std::string name;
~Node() {
for (auto& child : children) {
delete child;
};
}
struct UniformBuffer {
VkBuffer buffer;
VkDeviceMemory memory;
VkDescriptorBufferInfo descriptor;
VkDescriptorSet descriptorSet = VK_NULL_HANDLE;
void* mapped;
} uniformBuffer;
struct UniformBlock {
glm::mat4 matrix;
glm::mat4 jointMatrix[64]{};
float jointCount{ 0 };
} uniformBlock;
Mesh(vks::VulkanDevice* device, glm::mat4 matrix);
~Mesh();
};
// material data for pbr
struct MaterialData
{
vks::Buffer buffer;
VkDescriptorSet descriptorSet;
struct Values
{
glm::vec3 emissiveFactor;
glm::vec4 baseColorFactor;
}values;
struct Node;
};
// A glTF material stores information in e.g. the texture that is attached to it and colors
struct Material {
glm::vec4 baseColorFactor = glm::vec4(1.0f);
uint32_t baseColorTextureIndex;
uint32_t normalMapTextureIndex;
uint32_t matalicRoughTextureIndex;
int32_t emissiveTextureIndex = -1;
MaterialData materialData;
};
// Contains the texture for a single glTF image
// Images may be reused by texture objects and are as such separated
struct Image {
vks::Texture2D texture;
// We also store (and create) a descriptor set that's used to access this texture from the fragment shader
VkDescriptorSet descriptorSet;
};
// A glTF texture stores a reference to the image and a sampler
// In this sample, we are only interested in the image
struct Texture {
int32_t imageIndex;
};
// structure of skin
/*
glTF skin
*/
struct Skin {
std::string name;
Node* skeletonRoot = nullptr;
std::vector<glm::mat4> inverseBindMatrices;
std::vector<Node*> joints;
vks::Buffer ssbo;
VkDescriptorSet descriptorSet;
};
// A node represents an object in the glTF scene graph
struct Node {
Node* parent;
uint32_t index;
std::vector<Node*> children;
glm::mat4 matrix;
std::string name;
Mesh* mesh;
Skin* skin;
int32_t skinIndex = -1;
glm::vec3 translation{};
glm::vec3 scale{ 1.0f };
glm::quat rotation{};
glm::mat4 localMatrix();
glm::mat4 getMatrix();
void update();
~Node();
};
/*
glTF default vertex layout with easy Vulkan mapping functions
*/
enum class VertexComponent { Position, Normal, UV, Color, Tangent, Joint0, Weight0 };
// The vertex layout for the samples' model
struct Vertex {
glm::vec3 pos;
glm::vec3 normal;
glm::vec2 uv;
glm::vec4 color;
glm::vec4 joint0;
glm::vec4 weight0;
glm::vec4 tangent;
static VkVertexInputBindingDescription vertexInputBindingDescription;
static std::vector<VkVertexInputAttributeDescription> vertexInputAttributeDescriptions;
static VkPipelineVertexInputStateCreateInfo pipelineVertexInputStateCreateInfo;
static VkVertexInputBindingDescription inputBindingDescription(uint32_t binding);
static VkVertexInputAttributeDescription inputAttributeDescription(uint32_t binding, uint32_t location, VertexComponent component);
static std::vector<VkVertexInputAttributeDescription> inputAttributeDescriptions(uint32_t binding, const std::vector<VertexComponent> components);
/** @brief Returns the default pipeline vertex input state create info structure for the requested vertex components */
static VkPipelineVertexInputStateCreateInfo* getPipelineVertexInputState(const std::vector<VertexComponent> components);
};
struct AnimationSampler
{
std::string interpolation;
enum InterpolationType { LINEAR, STEP, CUBICSPLINE };
InterpolationType interpolation;
std::vector<float> inputs;
std::vector<glm::vec4> outputsVec4;
@ -172,7 +224,8 @@ namespace VulkanglTFModel
struct AnimationChannel
{
std::string path;
enum PathType { TRANSLATION, ROTATION, SCALE };
PathType path;
Node* node;
uint32_t samplerIndex;
@ -190,53 +243,68 @@ namespace VulkanglTFModel
};
/*
Model data
glTF model loading and rendering class
*/
std::vector<Image> images;
std::vector<Texture> textures;
std::vector<Material> materials;
std::vector<Node*> nodes;
std::vector<Skin> skins;
std::vector<Animation> animations;
class Model {
private:
glTFModel::Texture* getTexture(uint32_t index);
glTFModel::Texture emptyTexture;
void createEmptyTexture(VkQueue transferQueue);
public:
vks::VulkanDevice* device;
VkDescriptorPool descriptorPool;
uint32_t activeAnimation = 0;
struct Vertices {
int count;
VkBuffer buffer;
VkDeviceMemory memory;
} vertices;
struct Indices {
int count;
VkBuffer buffer;
VkDeviceMemory memory;
} indices;
std::vector<Node*> nodes;
std::vector<Node*> linearNodes;
std::vector<Skin*> skins;
std::vector<Texture> textures;
std::vector<Material> materials;
std::vector<Animation> animations;
struct Dimensions {
glm::vec3 min = glm::vec3(FLT_MAX);
glm::vec3 max = glm::vec3(-FLT_MAX);
glm::vec3 size;
glm::vec3 center;
float radius;
} dimensions;
bool metallicRoughnessWorkflow = true;
bool buffersBound = false;
std::string path;
Model() {};
~Model();
void loadNode(glTFModel::Node* parent, const tinygltf::Node& node, uint32_t nodeIndex, const tinygltf::Model& model, std::vector<uint32_t>& indexBuffer, std::vector<Vertex>& vertexBuffer, float globalscale);
void loadSkins(tinygltf::Model& gltfModel);
void loadImages(tinygltf::Model& gltfModel, vks::VulkanDevice* device, VkQueue transferQueue);
void loadMaterials(tinygltf::Model& gltfModel);
void loadAnimations(tinygltf::Model& gltfModel);
void loadFromFile(std::string filename, vks::VulkanDevice* device, VkQueue transferQueue, uint32_t fileLoadingFlags = glTFModel::FileLoadingFlags::None, float scale = 1.0f);
void bindBuffers(VkCommandBuffer commandBuffer);
void drawNode(Node* node, VkCommandBuffer commandBuffer, uint32_t renderFlags = 0, VkPipelineLayout pipelineLayout = VK_NULL_HANDLE, uint32_t bindImageSet = 1);
void draw(VkCommandBuffer commandBuffer, uint32_t renderFlags = 0, VkPipelineLayout pipelineLayout = VK_NULL_HANDLE, uint32_t bindImageSet = 1);
void getNodeDimensions(Node* node, glm::vec3& min, glm::vec3& max);
void getSceneDimensions();
void updateAnimation(uint32_t index, float time);
Node* findNode(Node* parent, uint32_t index);
Node* nodeFromIndex(uint32_t index);
void prepareNodeDescriptor(glTFModel::Node* node, VkDescriptorSetLayout descriptorSetLayout);
};
//VulkanglTFModel();
~VulkanglTFModel()
{
for (auto node : nodes) {
delete node;
}
// Release all Vulkan resources allocated for the model
vkDestroyBuffer(vulkanDevice->logicalDevice, vertices.buffer, nullptr);
vkFreeMemory(vulkanDevice->logicalDevice, vertices.memory, nullptr);
vkDestroyBuffer(vulkanDevice->logicalDevice, indices.buffer, nullptr);
vkFreeMemory(vulkanDevice->logicalDevice, indices.memory, nullptr);
for (auto& material : materials)
{
material.materialData.buffer.destroy();
}
for (Image image : images) {
vkDestroyImageView(vulkanDevice->logicalDevice, image.texture.view, nullptr);
vkDestroyImage(vulkanDevice->logicalDevice, image.texture.image, nullptr);
vkDestroySampler(vulkanDevice->logicalDevice, image.texture.sampler, nullptr);
vkFreeMemory(vulkanDevice->logicalDevice, image.texture.deviceMemory, nullptr);
}
}
void loadImages(tinygltf::Model& input);
void loadTextures(tinygltf::Model& input);
void loadMaterials(tinygltf::Model& input);
Node* findNode(Node* parent, uint32_t index);
Node* nodeFromIndex(uint32_t index);
//void loadSkins(tinygltf::Model& input);
void loadAnimations(tinygltf::Model& input);
void loadNode(const tinygltf::Node& inputNode, const tinygltf::Model& input, VulkanglTFModel::Node* parent, uint32_t nodeIndex, std::vector<uint32_t>& indexBuffer, std::vector<VulkanglTFModel::Vertex>& vertexBuffer);
glm::mat4 getNodeMatrix(VulkanglTFModel::Node* node);
void updateNodeMatrix(Node* node, std::vector<glm::mat4>& nodeMatrics);
//void updateJoints(VulkanglTFModel::Node* node);
void updateAnimation(float deltaTime, vks::Buffer& buffer);
void drawNode(VkCommandBuffer commandBuffer, VkPipelineLayout pipelineLayout, VulkanglTFModel::Node* node, bool bPushConstants);
void draw(VkCommandBuffer commandBuffer, VkPipelineLayout pipelineLayout, bool flag);
};
}