// PBR shader based on the Khronos WebGL PBR implementation // See https://github.com/KhronosGroup/glTF-WebGL-PBR // Supports both metallic roughness and specular glossiness inputs #version 450 layout (location = 0) in vec3 inWorldPos; layout (location = 1) in vec3 inNormal; layout (location = 2) in vec2 inUV0; layout (location = 3) in vec2 inUV1; layout (location = 4) in vec4 inColor0; // Scene bindings layout (set = 0, binding = 0) uniform UBO { mat4 projection; mat4 model; mat4 view; vec3 camPos; } ubo; layout (set = 0, binding = 1) uniform UBOParams { vec4 lightDir; float exposure; float gamma; float prefilteredCubeMipLevels; float scaleIBLAmbient; float debugViewInputs; float debugViewEquation; } uboParams; layout (set = 0, binding = 2) uniform samplerCube samplerIrradiance; layout (set = 0, binding = 3) uniform samplerCube prefilteredMap; layout (set = 0, binding = 4) uniform sampler2D samplerBRDFLUT; // Material bindings layout (set = 1, binding = 0) uniform sampler2D colorMap; layout (set = 1, binding = 1) uniform sampler2D physicalDescriptorMap; layout (set = 1, binding = 2) uniform sampler2D normalMap; layout (set = 1, binding = 3) uniform sampler2D aoMap; layout (set = 1, binding = 4) uniform sampler2D emissiveMap; layout (push_constant) uniform Material { vec4 baseColorFactor; vec4 emissiveFactor; vec4 diffuseFactor; vec4 specularFactor; float workflow; int baseColorTextureSet; int physicalDescriptorTextureSet; int normalTextureSet; int occlusionTextureSet; int emissiveTextureSet; float metallicFactor; float roughnessFactor; float alphaMask; float alphaMaskCutoff; } material; layout (location = 0) out vec4 outColor; // Encapsulate the various inputs used by the various functions in the shading equation // We store values in this struct to simplify the integration of alternative implementations // of the shading terms, outlined in the Readme.MD Appendix. struct PBRInfo { float NdotL; // cos angle between normal and light direction float NdotV; // cos angle between normal and view direction float NdotH; // cos angle between normal and half vector float LdotH; // cos angle between light direction and half vector float VdotH; // cos angle between view direction and half vector float perceptualRoughness; // roughness value, as authored by the model creator (input to shader) float metalness; // metallic value at the surface vec3 reflectance0; // full reflectance color (normal incidence angle) vec3 reflectance90; // reflectance color at grazing angle float alphaRoughness; // roughness mapped to a more linear change in the roughness (proposed by [2]) vec3 diffuseColor; // color contribution from diffuse lighting vec3 specularColor; // color contribution from specular lighting }; const float M_PI = 3.141592653589793; const float c_MinRoughness = 0.04; const float PBR_WORKFLOW_METALLIC_ROUGHNESS = 0.0; const float PBR_WORKFLOW_SPECULAR_GLOSINESS = 1.0f; #define MANUAL_SRGB 1 vec3 Uncharted2Tonemap(vec3 color) { float A = 0.15; float B = 0.50; float C = 0.10; float D = 0.20; float E = 0.02; float F = 0.30; float W = 11.2; return ((color*(A*color+C*B)+D*E)/(color*(A*color+B)+D*F))-E/F; } vec4 tonemap(vec4 color) { vec3 outcol = Uncharted2Tonemap(color.rgb * uboParams.exposure); outcol = outcol * (1.0f / Uncharted2Tonemap(vec3(11.2f))); return vec4(pow(outcol, vec3(1.0f / uboParams.gamma)), color.a); } vec4 SRGBtoLINEAR(vec4 srgbIn) { #ifdef MANUAL_SRGB #ifdef SRGB_FAST_APPROXIMATION vec3 linOut = pow(srgbIn.xyz,vec3(2.2)); #else //SRGB_FAST_APPROXIMATION vec3 bLess = step(vec3(0.04045),srgbIn.xyz); vec3 linOut = mix( srgbIn.xyz/vec3(12.92), pow((srgbIn.xyz+vec3(0.055))/vec3(1.055),vec3(2.4)), bLess ); #endif //SRGB_FAST_APPROXIMATION return vec4(linOut,srgbIn.w);; #else //MANUAL_SRGB return srgbIn; #endif //MANUAL_SRGB } // Find the normal for this fragment, pulling either from a predefined normal map // or from the interpolated mesh normal and tangent attributes. vec3 getNormal() { // Perturb normal, see http://www.thetenthplanet.de/archives/1180 vec3 tangentNormal = texture(normalMap, material.normalTextureSet == 0 ? inUV0 : inUV1).xyz * 2.0 - 1.0; vec3 q1 = dFdx(inWorldPos); vec3 q2 = dFdy(inWorldPos); vec2 st1 = dFdx(inUV0); vec2 st2 = dFdy(inUV0); vec3 N = normalize(inNormal); vec3 T = normalize(q1 * st2.t - q2 * st1.t); vec3 B = -normalize(cross(N, T)); mat3 TBN = mat3(T, B, N); return normalize(TBN * tangentNormal); } // Calculation of the lighting contribution from an optional Image Based Light source. // Precomputed Environment Maps are required uniform inputs and are computed as outlined in [1]. // See our README.md on Environment Maps [3] for additional discussion. vec3 getIBLContribution(PBRInfo pbrInputs, vec3 n, vec3 reflection) { float lod = (pbrInputs.perceptualRoughness * uboParams.prefilteredCubeMipLevels); // retrieve a scale and bias to F0. See [1], Figure 3 vec3 brdf = (texture(samplerBRDFLUT, vec2(pbrInputs.NdotV, 1.0 - pbrInputs.perceptualRoughness))).rgb; vec3 diffuseLight = SRGBtoLINEAR(tonemap(texture(samplerIrradiance, n))).rgb; vec3 specularLight = SRGBtoLINEAR(tonemap(textureLod(prefilteredMap, reflection, lod))).rgb; vec3 diffuse = diffuseLight * pbrInputs.diffuseColor; vec3 specular = specularLight * (pbrInputs.specularColor * brdf.x + brdf.y); // For presentation, this allows us to disable IBL terms // For presentation, this allows us to disable IBL terms diffuse *= uboParams.scaleIBLAmbient; specular *= uboParams.scaleIBLAmbient; return diffuse + specular; } // Basic Lambertian diffuse // Implementation from Lambert's Photometria https://archive.org/details/lambertsphotome00lambgoog // See also [1], Equation 1 vec3 diffuse(PBRInfo pbrInputs) { return pbrInputs.diffuseColor / M_PI; } // The following equation models the Fresnel reflectance term of the spec equation (aka F()) // Implementation of fresnel from [4], Equation 15 vec3 specularReflection(PBRInfo pbrInputs) { return pbrInputs.reflectance0 + (pbrInputs.reflectance90 - pbrInputs.reflectance0) * pow(clamp(1.0 - pbrInputs.VdotH, 0.0, 1.0), 5.0); } // This calculates the specular geometric attenuation (aka G()), // where rougher material will reflect less light back to the viewer. // This implementation is based on [1] Equation 4, and we adopt their modifications to // alphaRoughness as input as originally proposed in [2]. float geometricOcclusion(PBRInfo pbrInputs) { float NdotL = pbrInputs.NdotL; float NdotV = pbrInputs.NdotV; float r = pbrInputs.alphaRoughness; float attenuationL = 2.0 * NdotL / (NdotL + sqrt(r * r + (1.0 - r * r) * (NdotL * NdotL))); float attenuationV = 2.0 * NdotV / (NdotV + sqrt(r * r + (1.0 - r * r) * (NdotV * NdotV))); return attenuationL * attenuationV; } // The following equation(s) model the distribution of microfacet normals across the area being drawn (aka D()) // Implementation from "Average Irregularity Representation of a Roughened Surface for Ray Reflection" by T. S. Trowbridge, and K. P. Reitz // Follows the distribution function recommended in the SIGGRAPH 2013 course notes from EPIC Games [1], Equation 3. float microfacetDistribution(PBRInfo pbrInputs) { float roughnessSq = pbrInputs.alphaRoughness * pbrInputs.alphaRoughness; float f = (pbrInputs.NdotH * roughnessSq - pbrInputs.NdotH) * pbrInputs.NdotH + 1.0; return roughnessSq / (M_PI * f * f); } // Gets metallic factor from specular glossiness workflow inputs float convertMetallic(vec3 diffuse, vec3 specular, float maxSpecular) { float perceivedDiffuse = sqrt(0.299 * diffuse.r * diffuse.r + 0.587 * diffuse.g * diffuse.g + 0.114 * diffuse.b * diffuse.b); float perceivedSpecular = sqrt(0.299 * specular.r * specular.r + 0.587 * specular.g * specular.g + 0.114 * specular.b * specular.b); if (perceivedSpecular < c_MinRoughness) { return 0.0; } float a = c_MinRoughness; float b = perceivedDiffuse * (1.0 - maxSpecular) / (1.0 - c_MinRoughness) + perceivedSpecular - 2.0 * c_MinRoughness; float c = c_MinRoughness - perceivedSpecular; float D = max(b * b - 4.0 * a * c, 0.0); return clamp((-b + sqrt(D)) / (2.0 * a), 0.0, 1.0); } void main() { float perceptualRoughness; float metallic; vec3 diffuseColor; vec4 baseColor; vec3 f0 = vec3(0.04); if (material.alphaMask == 1.0f) { if (material.baseColorTextureSet > -1) { baseColor = SRGBtoLINEAR(texture(colorMap, material.baseColorTextureSet == 0 ? inUV0 : inUV1)) * material.baseColorFactor; } else { baseColor = material.baseColorFactor; } if (baseColor.a < material.alphaMaskCutoff) { discard; } } if (material.workflow == PBR_WORKFLOW_METALLIC_ROUGHNESS) { // Metallic and Roughness material properties are packed together // In glTF, these factors can be specified by fixed scalar values // or from a metallic-roughness map perceptualRoughness = material.roughnessFactor; metallic = material.metallicFactor; if (material.physicalDescriptorTextureSet > -1) { // Roughness is stored in the 'g' channel, metallic is stored in the 'b' channel. // This layout intentionally reserves the 'r' channel for (optional) occlusion map data vec4 mrSample = texture(physicalDescriptorMap, material.physicalDescriptorTextureSet == 0 ? inUV0 : inUV1); perceptualRoughness = mrSample.g * perceptualRoughness; metallic = mrSample.b * metallic; } else { perceptualRoughness = clamp(perceptualRoughness, c_MinRoughness, 1.0); metallic = clamp(metallic, 0.0, 1.0); } // Roughness is authored as perceptual roughness; as is convention, // convert to material roughness by squaring the perceptual roughness [2]. // The albedo may be defined from a base texture or a flat color if (material.baseColorTextureSet > -1) { baseColor = SRGBtoLINEAR(texture(colorMap, material.baseColorTextureSet == 0 ? inUV0 : inUV1)) * material.baseColorFactor; } else { baseColor = material.baseColorFactor; } } if (material.workflow == PBR_WORKFLOW_SPECULAR_GLOSINESS) { // Values from specular glossiness workflow are converted to metallic roughness if (material.physicalDescriptorTextureSet > -1) { perceptualRoughness = 1.0 - texture(physicalDescriptorMap, material.physicalDescriptorTextureSet == 0 ? inUV0 : inUV1).a; } else { perceptualRoughness = 0.0; } const float epsilon = 1e-6; vec4 diffuse = SRGBtoLINEAR(texture(colorMap, inUV0)); vec3 specular = SRGBtoLINEAR(texture(physicalDescriptorMap, inUV0)).rgb; float maxSpecular = max(max(specular.r, specular.g), specular.b); // Convert metallic value from specular glossiness inputs metallic = convertMetallic(diffuse.rgb, specular, maxSpecular); vec3 baseColorDiffusePart = diffuse.rgb * ((1.0 - maxSpecular) / (1 - c_MinRoughness) / max(1 - metallic, epsilon)) * material.diffuseFactor.rgb; vec3 baseColorSpecularPart = specular - (vec3(c_MinRoughness) * (1 - metallic) * (1 / max(metallic, epsilon))) * material.specularFactor.rgb; baseColor = vec4(mix(baseColorDiffusePart, baseColorSpecularPart, metallic * metallic), diffuse.a); } baseColor *= inColor0; diffuseColor = baseColor.rgb * (vec3(1.0) - f0); diffuseColor *= 1.0 - metallic; float alphaRoughness = perceptualRoughness * perceptualRoughness; vec3 specularColor = mix(f0, baseColor.rgb, metallic); // Compute reflectance. float reflectance = max(max(specularColor.r, specularColor.g), specularColor.b); // For typical incident reflectance range (between 4% to 100%) set the grazing reflectance to 100% for typical fresnel effect. // For very low reflectance range on highly diffuse objects (below 4%), incrementally reduce grazing reflecance to 0%. float reflectance90 = clamp(reflectance * 25.0, 0.0, 1.0); vec3 specularEnvironmentR0 = specularColor.rgb; vec3 specularEnvironmentR90 = vec3(1.0, 1.0, 1.0) * reflectance90; vec3 n = (material.normalTextureSet > -1) ? getNormal() : normalize(inNormal); vec3 v = normalize(ubo.camPos - inWorldPos); // Vector from surface point to camera vec3 l = normalize(uboParams.lightDir.xyz); // Vector from surface point to light vec3 h = normalize(l+v); // Half vector between both l and v vec3 reflection = -normalize(reflect(v, n)); reflection.y *= -1.0f; float NdotL = clamp(dot(n, l), 0.001, 1.0); float NdotV = clamp(abs(dot(n, v)), 0.001, 1.0); float NdotH = clamp(dot(n, h), 0.0, 1.0); float LdotH = clamp(dot(l, h), 0.0, 1.0); float VdotH = clamp(dot(v, h), 0.0, 1.0); PBRInfo pbrInputs = PBRInfo( NdotL, NdotV, NdotH, LdotH, VdotH, perceptualRoughness, metallic, specularEnvironmentR0, specularEnvironmentR90, alphaRoughness, diffuseColor, specularColor ); // Calculate the shading terms for the microfacet specular shading model vec3 F = specularReflection(pbrInputs); float G = geometricOcclusion(pbrInputs); float D = microfacetDistribution(pbrInputs); const vec3 u_LightColor = vec3(1.0); // Calculation of analytical lighting contribution vec3 diffuseContrib = (1.0 - F) * diffuse(pbrInputs); vec3 specContrib = F * G * D / (4.0 * NdotL * NdotV); // Obtain final intensity as reflectance (BRDF) scaled by the energy of the light (cosine law) vec3 color = NdotL * u_LightColor * (diffuseContrib + specContrib); // Calculate lighting contribution from image based lighting source (IBL) color += getIBLContribution(pbrInputs, n, reflection); const float u_OcclusionStrength = 1.0f; // Apply optional PBR terms for additional (optional) shading if (material.occlusionTextureSet > -1) { float ao = texture(aoMap, (material.occlusionTextureSet == 0 ? inUV0 : inUV1)).r; color = mix(color, color * ao, u_OcclusionStrength); } const float u_EmissiveFactor = 1.0f; if (material.emissiveTextureSet > -1) { vec3 emissive = SRGBtoLINEAR(texture(emissiveMap, material.emissiveTextureSet == 0 ? inUV0 : inUV1)).rgb * u_EmissiveFactor; color += emissive; } outColor = vec4(color, baseColor.a); // Shader inputs debug visualization if (uboParams.debugViewInputs > 0.0) { int index = int(uboParams.debugViewInputs); switch (index) { case 1: outColor.rgba = material.baseColorTextureSet > -1 ? texture(colorMap, material.baseColorTextureSet == 0 ? inUV0 : inUV1) : vec4(1.0f); break; case 2: outColor.rgb = (material.normalTextureSet > -1) ? texture(normalMap, material.normalTextureSet == 0 ? inUV0 : inUV1).rgb : normalize(inNormal); break; case 3: outColor.rgb = (material.occlusionTextureSet > -1) ? texture(aoMap, material.occlusionTextureSet == 0 ? inUV0 : inUV1).rrr : vec3(0.0f); break; case 4: outColor.rgb = (material.emissiveTextureSet > -1) ? texture(emissiveMap, material.emissiveTextureSet == 0 ? inUV0 : inUV1).rgb : vec3(0.0f); break; case 5: outColor.rgb = texture(physicalDescriptorMap, inUV0).bbb; break; case 6: outColor.rgb = texture(physicalDescriptorMap, inUV0).ggg; break; } outColor = SRGBtoLINEAR(outColor); } // PBR equation debug visualization // "none", "Diff (l,n)", "F (l,h)", "G (l,v,h)", "D (h)", "Specular" if (uboParams.debugViewEquation > 0.0) { int index = int(uboParams.debugViewEquation); switch (index) { case 1: outColor.rgb = diffuseContrib; break; case 2: outColor.rgb = F; break; case 3: outColor.rgb = vec3(G); break; case 4: outColor.rgb = vec3(D); break; case 5: outColor.rgb = specContrib; break; } } }