/* * Vulkan Example - Basic indexed triangle rendering * * Note: * This is a "pedal to the metal" example to show off how to get Vulkan up and displaying something * Contrary to the other examples, this one won't make use of helper functions or initializers * Except in a few cases (swap chain setup e.g.) * * Copyright (C) 2016-2017 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include #include #include #include #include #include #include #define GLM_FORCE_RADIANS #define GLM_FORCE_DEPTH_ZERO_TO_ONE #include #include #include #include "vulkanexamplebase.h" // Set to "true" to enable Vulkan's validation layers (see vulkandebug.cpp for details) #define ENABLE_VALIDATION false // Set to "true" to use staging buffers for uploading vertex and index data to device local memory // See "prepareVertices" for details on what's staging and on why to use it #define USE_STAGING true class VulkanExample : public VulkanExampleBase { public: // Vertex layout used in this example struct Vertex { float position[3]; float color[3]; }; // Vertex buffer and attributes struct { VkDeviceMemory memory; // Handle to the device memory for this buffer VkBuffer buffer; // Handle to the Vulkan buffer object that the memory is bound to } vertices; // Index buffer struct { VkDeviceMemory memory; VkBuffer buffer; uint32_t count; } indices; // Uniform buffer block object struct { VkDeviceMemory memory; VkBuffer buffer; VkDescriptorBufferInfo descriptor; } uniformBufferVS; // For simplicity we use the same uniform block layout as in the shader: // // layout(set = 0, binding = 0) uniform UBO // { // mat4 projectionMatrix; // mat4 modelMatrix; // mat4 viewMatrix; // } ubo; // // This way we can just memcopy the ubo data to the ubo // Note: You should use data types that align with the GPU in order to avoid manual padding (vec4, mat4) struct { glm::mat4 projectionMatrix; glm::mat4 modelMatrix; glm::mat4 viewMatrix; } uboVS; // The pipeline layout is used by a pipeline to access the descriptor sets // It defines interface (without binding any actual data) between the shader stages used by the pipeline and the shader resources // A pipeline layout can be shared among multiple pipelines as long as their interfaces match VkPipelineLayout pipelineLayout; // Pipelines (often called "pipeline state objects") are used to bake all states that affect a pipeline // While in OpenGL every state can be changed at (almost) any time, Vulkan requires to layout the graphics (and compute) pipeline states upfront // So for each combination of non-dynamic pipeline states you need a new pipeline (there are a few exceptions to this not discussed here) // Even though this adds a new dimension of planning ahead, it's a great opportunity for performance optimizations by the driver VkPipeline pipeline; // The descriptor set layout describes the shader binding layout (without actually referencing descriptor) // Like the pipeline layout it's pretty much a blueprint and can be used with different descriptor sets as long as their layout matches VkDescriptorSetLayout descriptorSetLayout; // The descriptor set stores the resources bound to the binding points in a shader // It connects the binding points of the different shaders with the buffers and images used for those bindings VkDescriptorSet descriptorSet; // Synchronization primitives // Synchronization is an important concept of Vulkan that OpenGL mostly hid away. Getting this right is crucial to using Vulkan. // Semaphores // Used to coordinate operations within the graphics queue and ensure correct command ordering VkSemaphore presentCompleteSemaphore; VkSemaphore renderCompleteSemaphore; // Fences // Used to check the completion of queue operations (e.g. command buffer execution) std::vector queueCompleteFences; VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) { title = "games 106 - homework0"; // To keep things simple, we don't use the UI overlay settings.overlay = false; // Setup a default look-at camera camera.type = Camera::CameraType::lookat; camera.setPosition(glm::vec3(0.0f, 0.0f, -2.5f)); camera.setRotation(glm::vec3(0.0f)); camera.setPerspective(60.0f, (float)width / (float)height, 1.0f, 256.0f); // Values not set here are initialized in the base class constructor } ~VulkanExample() { // Clean up used Vulkan resources // Note: Inherited destructor cleans up resources stored in base class vkDestroyPipeline(device, pipeline, nullptr); vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); vkDestroyBuffer(device, vertices.buffer, nullptr); vkFreeMemory(device, vertices.memory, nullptr); vkDestroyBuffer(device, indices.buffer, nullptr); vkFreeMemory(device, indices.memory, nullptr); vkDestroyBuffer(device, uniformBufferVS.buffer, nullptr); vkFreeMemory(device, uniformBufferVS.memory, nullptr); vkDestroySemaphore(device, presentCompleteSemaphore, nullptr); vkDestroySemaphore(device, renderCompleteSemaphore, nullptr); for (auto& fence : queueCompleteFences) { vkDestroyFence(device, fence, nullptr); } } // This function is used to request a device memory type that supports all the property flags we request (e.g. device local, host visible) // Upon success it will return the index of the memory type that fits our requested memory properties // This is necessary as implementations can offer an arbitrary number of memory types with different // memory properties. // You can check http://vulkan.gpuinfo.org/ for details on different memory configurations uint32_t getMemoryTypeIndex(uint32_t typeBits, VkMemoryPropertyFlags properties) { // Iterate over all memory types available for the device used in this example for (uint32_t i = 0; i < deviceMemoryProperties.memoryTypeCount; i++) { if ((typeBits & 1) == 1) { if ((deviceMemoryProperties.memoryTypes[i].propertyFlags & properties) == properties) { return i; } } typeBits >>= 1; } throw "Could not find a suitable memory type!"; } // Create the Vulkan synchronization primitives used in this example void prepareSynchronizationPrimitives() { // Semaphores (Used for correct command ordering) VkSemaphoreCreateInfo semaphoreCreateInfo = {}; semaphoreCreateInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO; semaphoreCreateInfo.pNext = nullptr; // Semaphore used to ensure that image presentation is complete before starting to submit again VK_CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &presentCompleteSemaphore)); // Semaphore used to ensure that all commands submitted have been finished before submitting the image to the queue VK_CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &renderCompleteSemaphore)); // Fences (Used to check draw command buffer completion) VkFenceCreateInfo fenceCreateInfo = {}; fenceCreateInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO; // Create in signaled state so we don't wait on first render of each command buffer fenceCreateInfo.flags = VK_FENCE_CREATE_SIGNALED_BIT; queueCompleteFences.resize(drawCmdBuffers.size()); for (auto& fence : queueCompleteFences) { VK_CHECK_RESULT(vkCreateFence(device, &fenceCreateInfo, nullptr, &fence)); } } // Get a new command buffer from the command pool // If begin is true, the command buffer is also started so we can start adding commands VkCommandBuffer getCommandBuffer(bool begin) { VkCommandBuffer cmdBuffer; VkCommandBufferAllocateInfo cmdBufAllocateInfo = {}; cmdBufAllocateInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO; cmdBufAllocateInfo.commandPool = cmdPool; cmdBufAllocateInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY; cmdBufAllocateInfo.commandBufferCount = 1; VK_CHECK_RESULT(vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, &cmdBuffer)); // If requested, also start the new command buffer if (begin) { VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo(); VK_CHECK_RESULT(vkBeginCommandBuffer(cmdBuffer, &cmdBufInfo)); } return cmdBuffer; } // End the command buffer and submit it to the queue // Uses a fence to ensure command buffer has finished executing before deleting it void flushCommandBuffer(VkCommandBuffer commandBuffer) { assert(commandBuffer != VK_NULL_HANDLE); VK_CHECK_RESULT(vkEndCommandBuffer(commandBuffer)); VkSubmitInfo submitInfo = {}; submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &commandBuffer; // Create fence to ensure that the command buffer has finished executing VkFenceCreateInfo fenceCreateInfo = {}; fenceCreateInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO; fenceCreateInfo.flags = 0; VkFence fence; VK_CHECK_RESULT(vkCreateFence(device, &fenceCreateInfo, nullptr, &fence)); // Submit to the queue VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, fence)); // Wait for the fence to signal that command buffer has finished executing VK_CHECK_RESULT(vkWaitForFences(device, 1, &fence, VK_TRUE, DEFAULT_FENCE_TIMEOUT)); vkDestroyFence(device, fence, nullptr); vkFreeCommandBuffers(device, cmdPool, 1, &commandBuffer); } // Build separate command buffers for every framebuffer image // Unlike in OpenGL all rendering commands are recorded once into command buffers that are then resubmitted to the queue // This allows to generate work upfront and from multiple threads, one of the biggest advantages of Vulkan void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = {}; cmdBufInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; cmdBufInfo.pNext = nullptr; // Set clear values for all framebuffer attachments with loadOp set to clear // We use two attachments (color and depth) that are cleared at the start of the subpass and as such we need to set clear values for both VkClearValue clearValues[2]; clearValues[0].color = { { 0.0f, 0.0f, 0.2f, 1.0f } }; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = {}; renderPassBeginInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO; renderPassBeginInfo.pNext = nullptr; renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { // Set target frame buffer renderPassBeginInfo.framebuffer = frameBuffers[i]; VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); // Start the first sub pass specified in our default render pass setup by the base class // This will clear the color and depth attachment vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); // Update dynamic viewport state VkViewport viewport = {}; viewport.height = (float)height; viewport.width = (float)width; viewport.minDepth = (float) 0.0f; viewport.maxDepth = (float) 1.0f; vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); // Update dynamic scissor state VkRect2D scissor = {}; scissor.extent.width = width; scissor.extent.height = height; scissor.offset.x = 0; scissor.offset.y = 0; vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); // Bind descriptor sets describing shader binding points vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, nullptr); // Bind the rendering pipeline // The pipeline (state object) contains all states of the rendering pipeline, binding it will set all the states specified at pipeline creation time vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline); // Bind triangle vertex buffer (contains position and colors) VkDeviceSize offsets[1] = { 0 }; vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &vertices.buffer, offsets); // Bind triangle index buffer vkCmdBindIndexBuffer(drawCmdBuffers[i], indices.buffer, 0, VK_INDEX_TYPE_UINT32); // Draw indexed triangle vkCmdDrawIndexed(drawCmdBuffers[i], indices.count, 1, 0, 0, 1); vkCmdEndRenderPass(drawCmdBuffers[i]); // Ending the render pass will add an implicit barrier transitioning the frame buffer color attachment to // VK_IMAGE_LAYOUT_PRESENT_SRC_KHR for presenting it to the windowing system VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } void draw() { #if defined(VK_USE_PLATFORM_MACOS_MVK) // SRS - on macOS use swapchain helper function with common semaphores/fences for proper resize handling // Get next image in the swap chain (back/front buffer) prepareFrame(); // Use a fence to wait until the command buffer has finished execution before using it again VK_CHECK_RESULT(vkWaitForFences(device, 1, &waitFences[currentBuffer], VK_TRUE, UINT64_MAX)); VK_CHECK_RESULT(vkResetFences(device, 1, &waitFences[currentBuffer])); #else // SRS - on other platforms use original bare code with local semaphores/fences for illustrative purposes // Get next image in the swap chain (back/front buffer) VkResult acquire = swapChain.acquireNextImage(presentCompleteSemaphore, ¤tBuffer); if (!((acquire == VK_SUCCESS) || (acquire == VK_SUBOPTIMAL_KHR))) { VK_CHECK_RESULT(acquire); } // Use a fence to wait until the command buffer has finished execution before using it again VK_CHECK_RESULT(vkWaitForFences(device, 1, &queueCompleteFences[currentBuffer], VK_TRUE, UINT64_MAX)); VK_CHECK_RESULT(vkResetFences(device, 1, &queueCompleteFences[currentBuffer])); #endif // Pipeline stage at which the queue submission will wait (via pWaitSemaphores) VkPipelineStageFlags waitStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; // The submit info structure specifies a command buffer queue submission batch VkSubmitInfo submitInfo = {}; submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; submitInfo.pWaitDstStageMask = &waitStageMask; // Pointer to the list of pipeline stages that the semaphore waits will occur at submitInfo.waitSemaphoreCount = 1; // One wait semaphore submitInfo.signalSemaphoreCount = 1; // One signal semaphore submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; // Command buffers(s) to execute in this batch (submission) submitInfo.commandBufferCount = 1; // One command buffer #if defined(VK_USE_PLATFORM_MACOS_MVK) // SRS - on macOS use swapchain helper function with common semaphores/fences for proper resize handling submitInfo.pWaitSemaphores = &semaphores.presentComplete; // Semaphore(s) to wait upon before the submitted command buffer starts executing submitInfo.pSignalSemaphores = &semaphores.renderComplete; // Semaphore(s) to be signaled when command buffers have completed // Submit to the graphics queue passing a wait fence VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, waitFences[currentBuffer])); // Present the current buffer to the swap chain submitFrame(); #else // SRS - on other platforms use original bare code with local semaphores/fences for illustrative purposes submitInfo.pWaitSemaphores = &presentCompleteSemaphore; // Semaphore(s) to wait upon before the submitted command buffer starts executing submitInfo.pSignalSemaphores = &renderCompleteSemaphore; // Semaphore(s) to be signaled when command buffers have completed // Submit to the graphics queue passing a wait fence VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, queueCompleteFences[currentBuffer])); // Present the current buffer to the swap chain // Pass the semaphore signaled by the command buffer submission from the submit info as the wait semaphore for swap chain presentation // This ensures that the image is not presented to the windowing system until all commands have been submitted VkResult present = swapChain.queuePresent(queue, currentBuffer, renderCompleteSemaphore); if (!((present == VK_SUCCESS) || (present == VK_SUBOPTIMAL_KHR))) { VK_CHECK_RESULT(present); } #endif } // Prepare vertex and index buffers for an indexed triangle // Also uploads them to device local memory using staging and initializes vertex input and attribute binding to match the vertex shader void prepareVertices(bool useStagingBuffers) { // A note on memory management in Vulkan in general: // This is a very complex topic and while it's fine for an example application to small individual memory allocations that is not // what should be done a real-world application, where you should allocate large chunks of memory at once instead. // Setup vertices std::vector vertexBuffer = { { { 1.0f, 1.0f, 0.0f }, { 1.0f, 0.0f, 0.0f } }, { { -1.0f, 1.0f, 0.0f }, { 0.0f, 1.0f, 0.0f } }, { { 0.0f, -1.0f, 0.0f }, { 0.0f, 0.0f, 1.0f } } }; uint32_t vertexBufferSize = static_cast(vertexBuffer.size()) * sizeof(Vertex); // Setup indices std::vector indexBuffer = { 0, 1, 2 }; indices.count = static_cast(indexBuffer.size()); uint32_t indexBufferSize = indices.count * sizeof(uint32_t); VkMemoryAllocateInfo memAlloc = {}; memAlloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; VkMemoryRequirements memReqs; void *data; if (useStagingBuffers) { // Static data like vertex and index buffer should be stored on the device memory // for optimal (and fastest) access by the GPU // // To achieve this we use so-called "staging buffers" : // - Create a buffer that's visible to the host (and can be mapped) // - Copy the data to this buffer // - Create another buffer that's local on the device (VRAM) with the same size // - Copy the data from the host to the device using a command buffer // - Delete the host visible (staging) buffer // - Use the device local buffers for rendering struct StagingBuffer { VkDeviceMemory memory; VkBuffer buffer; }; struct { StagingBuffer vertices; StagingBuffer indices; } stagingBuffers; // Vertex buffer VkBufferCreateInfo vertexBufferInfo = {}; vertexBufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; vertexBufferInfo.size = vertexBufferSize; // Buffer is used as the copy source vertexBufferInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT; // Create a host-visible buffer to copy the vertex data to (staging buffer) VK_CHECK_RESULT(vkCreateBuffer(device, &vertexBufferInfo, nullptr, &stagingBuffers.vertices.buffer)); vkGetBufferMemoryRequirements(device, stagingBuffers.vertices.buffer, &memReqs); memAlloc.allocationSize = memReqs.size; // Request a host visible memory type that can be used to copy our data do // Also request it to be coherent, so that writes are visible to the GPU right after unmapping the buffer memAlloc.memoryTypeIndex = getMemoryTypeIndex(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &stagingBuffers.vertices.memory)); // Map and copy VK_CHECK_RESULT(vkMapMemory(device, stagingBuffers.vertices.memory, 0, memAlloc.allocationSize, 0, &data)); memcpy(data, vertexBuffer.data(), vertexBufferSize); vkUnmapMemory(device, stagingBuffers.vertices.memory); VK_CHECK_RESULT(vkBindBufferMemory(device, stagingBuffers.vertices.buffer, stagingBuffers.vertices.memory, 0)); // Create a device local buffer to which the (host local) vertex data will be copied and which will be used for rendering vertexBufferInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; VK_CHECK_RESULT(vkCreateBuffer(device, &vertexBufferInfo, nullptr, &vertices.buffer)); vkGetBufferMemoryRequirements(device, vertices.buffer, &memReqs); memAlloc.allocationSize = memReqs.size; memAlloc.memoryTypeIndex = getMemoryTypeIndex(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &vertices.memory)); VK_CHECK_RESULT(vkBindBufferMemory(device, vertices.buffer, vertices.memory, 0)); // Index buffer VkBufferCreateInfo indexbufferInfo = {}; indexbufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; indexbufferInfo.size = indexBufferSize; indexbufferInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT; // Copy index data to a buffer visible to the host (staging buffer) VK_CHECK_RESULT(vkCreateBuffer(device, &indexbufferInfo, nullptr, &stagingBuffers.indices.buffer)); vkGetBufferMemoryRequirements(device, stagingBuffers.indices.buffer, &memReqs); memAlloc.allocationSize = memReqs.size; memAlloc.memoryTypeIndex = getMemoryTypeIndex(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &stagingBuffers.indices.memory)); VK_CHECK_RESULT(vkMapMemory(device, stagingBuffers.indices.memory, 0, indexBufferSize, 0, &data)); memcpy(data, indexBuffer.data(), indexBufferSize); vkUnmapMemory(device, stagingBuffers.indices.memory); VK_CHECK_RESULT(vkBindBufferMemory(device, stagingBuffers.indices.buffer, stagingBuffers.indices.memory, 0)); // Create destination buffer with device only visibility indexbufferInfo.usage = VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; VK_CHECK_RESULT(vkCreateBuffer(device, &indexbufferInfo, nullptr, &indices.buffer)); vkGetBufferMemoryRequirements(device, indices.buffer, &memReqs); memAlloc.allocationSize = memReqs.size; memAlloc.memoryTypeIndex = getMemoryTypeIndex(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &indices.memory)); VK_CHECK_RESULT(vkBindBufferMemory(device, indices.buffer, indices.memory, 0)); // Buffer copies have to be submitted to a queue, so we need a command buffer for them // Note: Some devices offer a dedicated transfer queue (with only the transfer bit set) that may be faster when doing lots of copies VkCommandBuffer copyCmd = getCommandBuffer(true); // Put buffer region copies into command buffer VkBufferCopy copyRegion = {}; // Vertex buffer copyRegion.size = vertexBufferSize; vkCmdCopyBuffer(copyCmd, stagingBuffers.vertices.buffer, vertices.buffer, 1, ©Region); // Index buffer copyRegion.size = indexBufferSize; vkCmdCopyBuffer(copyCmd, stagingBuffers.indices.buffer, indices.buffer, 1, ©Region); // Flushing the command buffer will also submit it to the queue and uses a fence to ensure that all commands have been executed before returning flushCommandBuffer(copyCmd); // Destroy staging buffers // Note: Staging buffer must not be deleted before the copies have been submitted and executed vkDestroyBuffer(device, stagingBuffers.vertices.buffer, nullptr); vkFreeMemory(device, stagingBuffers.vertices.memory, nullptr); vkDestroyBuffer(device, stagingBuffers.indices.buffer, nullptr); vkFreeMemory(device, stagingBuffers.indices.memory, nullptr); } else { // Don't use staging // Create host-visible buffers only and use these for rendering. This is not advised and will usually result in lower rendering performance // Vertex buffer VkBufferCreateInfo vertexBufferInfo = {}; vertexBufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; vertexBufferInfo.size = vertexBufferSize; vertexBufferInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT; // Copy vertex data to a buffer visible to the host VK_CHECK_RESULT(vkCreateBuffer(device, &vertexBufferInfo, nullptr, &vertices.buffer)); vkGetBufferMemoryRequirements(device, vertices.buffer, &memReqs); memAlloc.allocationSize = memReqs.size; // VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT is host visible memory, and VK_MEMORY_PROPERTY_HOST_COHERENT_BIT makes sure writes are directly visible memAlloc.memoryTypeIndex = getMemoryTypeIndex(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &vertices.memory)); VK_CHECK_RESULT(vkMapMemory(device, vertices.memory, 0, memAlloc.allocationSize, 0, &data)); memcpy(data, vertexBuffer.data(), vertexBufferSize); vkUnmapMemory(device, vertices.memory); VK_CHECK_RESULT(vkBindBufferMemory(device, vertices.buffer, vertices.memory, 0)); // Index buffer VkBufferCreateInfo indexbufferInfo = {}; indexbufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; indexbufferInfo.size = indexBufferSize; indexbufferInfo.usage = VK_BUFFER_USAGE_INDEX_BUFFER_BIT; // Copy index data to a buffer visible to the host VK_CHECK_RESULT(vkCreateBuffer(device, &indexbufferInfo, nullptr, &indices.buffer)); vkGetBufferMemoryRequirements(device, indices.buffer, &memReqs); memAlloc.allocationSize = memReqs.size; memAlloc.memoryTypeIndex = getMemoryTypeIndex(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &indices.memory)); VK_CHECK_RESULT(vkMapMemory(device, indices.memory, 0, indexBufferSize, 0, &data)); memcpy(data, indexBuffer.data(), indexBufferSize); vkUnmapMemory(device, indices.memory); VK_CHECK_RESULT(vkBindBufferMemory(device, indices.buffer, indices.memory, 0)); } } void setupDescriptorPool() { // We need to tell the API the number of max. requested descriptors per type VkDescriptorPoolSize typeCounts[1]; // This example only uses one descriptor type (uniform buffer) and only requests one descriptor of this type typeCounts[0].type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; typeCounts[0].descriptorCount = 1; // For additional types you need to add new entries in the type count list // E.g. for two combined image samplers : // typeCounts[1].type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; // typeCounts[1].descriptorCount = 2; // Create the global descriptor pool // All descriptors used in this example are allocated from this pool VkDescriptorPoolCreateInfo descriptorPoolInfo = {}; descriptorPoolInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO; descriptorPoolInfo.pNext = nullptr; descriptorPoolInfo.poolSizeCount = 1; descriptorPoolInfo.pPoolSizes = typeCounts; // Set the max. number of descriptor sets that can be requested from this pool (requesting beyond this limit will result in an error) descriptorPoolInfo.maxSets = 1; VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); } void setupDescriptorSetLayout() { // Setup layout of descriptors used in this example // Basically connects the different shader stages to descriptors for binding uniform buffers, image samplers, etc. // So every shader binding should map to one descriptor set layout binding // Binding 0: Uniform buffer (Vertex shader) VkDescriptorSetLayoutBinding layoutBinding = {}; layoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; layoutBinding.descriptorCount = 1; layoutBinding.stageFlags = VK_SHADER_STAGE_VERTEX_BIT; layoutBinding.pImmutableSamplers = nullptr; VkDescriptorSetLayoutCreateInfo descriptorLayout = {}; descriptorLayout.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO; descriptorLayout.pNext = nullptr; descriptorLayout.bindingCount = 1; descriptorLayout.pBindings = &layoutBinding; VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout)); // Create the pipeline layout that is used to generate the rendering pipelines that are based on this descriptor set layout // In a more complex scenario you would have different pipeline layouts for different descriptor set layouts that could be reused VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = {}; pPipelineLayoutCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO; pPipelineLayoutCreateInfo.pNext = nullptr; pPipelineLayoutCreateInfo.setLayoutCount = 1; pPipelineLayoutCreateInfo.pSetLayouts = &descriptorSetLayout; VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout)); } void setupDescriptorSet() { // Allocate a new descriptor set from the global descriptor pool VkDescriptorSetAllocateInfo allocInfo = {}; allocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO; allocInfo.descriptorPool = descriptorPool; allocInfo.descriptorSetCount = 1; allocInfo.pSetLayouts = &descriptorSetLayout; VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet)); // Update the descriptor set determining the shader binding points // For every binding point used in a shader there needs to be one // descriptor set matching that binding point VkWriteDescriptorSet writeDescriptorSet = {}; // Binding 0 : Uniform buffer writeDescriptorSet.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; writeDescriptorSet.dstSet = descriptorSet; writeDescriptorSet.descriptorCount = 1; writeDescriptorSet.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; writeDescriptorSet.pBufferInfo = &uniformBufferVS.descriptor; // Binds this uniform buffer to binding point 0 writeDescriptorSet.dstBinding = 0; vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr); } // Create the depth (and stencil) buffer attachments used by our framebuffers // Note: Override of virtual function in the base class and called from within VulkanExampleBase::prepare void setupDepthStencil() { // Create an optimal image used as the depth stencil attachment VkImageCreateInfo image = {}; image.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO; image.imageType = VK_IMAGE_TYPE_2D; image.format = depthFormat; // Use example's height and width image.extent = { width, height, 1 }; image.mipLevels = 1; image.arrayLayers = 1; image.samples = VK_SAMPLE_COUNT_1_BIT; image.tiling = VK_IMAGE_TILING_OPTIMAL; image.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT; image.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; VK_CHECK_RESULT(vkCreateImage(device, &image, nullptr, &depthStencil.image)); // Allocate memory for the image (device local) and bind it to our image VkMemoryAllocateInfo memAlloc = {}; memAlloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; VkMemoryRequirements memReqs; vkGetImageMemoryRequirements(device, depthStencil.image, &memReqs); memAlloc.allocationSize = memReqs.size; memAlloc.memoryTypeIndex = getMemoryTypeIndex(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &depthStencil.mem)); VK_CHECK_RESULT(vkBindImageMemory(device, depthStencil.image, depthStencil.mem, 0)); // Create a view for the depth stencil image // Images aren't directly accessed in Vulkan, but rather through views described by a subresource range // This allows for multiple views of one image with differing ranges (e.g. for different layers) VkImageViewCreateInfo depthStencilView = {}; depthStencilView.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO; depthStencilView.viewType = VK_IMAGE_VIEW_TYPE_2D; depthStencilView.format = depthFormat; depthStencilView.subresourceRange = {}; depthStencilView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT; // Stencil aspect should only be set on depth + stencil formats (VK_FORMAT_D16_UNORM_S8_UINT..VK_FORMAT_D32_SFLOAT_S8_UINT) if (depthFormat >= VK_FORMAT_D16_UNORM_S8_UINT) depthStencilView.subresourceRange.aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT; depthStencilView.subresourceRange.baseMipLevel = 0; depthStencilView.subresourceRange.levelCount = 1; depthStencilView.subresourceRange.baseArrayLayer = 0; depthStencilView.subresourceRange.layerCount = 1; depthStencilView.image = depthStencil.image; VK_CHECK_RESULT(vkCreateImageView(device, &depthStencilView, nullptr, &depthStencil.view)); } // Create a frame buffer for each swap chain image // Note: Override of virtual function in the base class and called from within VulkanExampleBase::prepare void setupFrameBuffer() { // Create a frame buffer for every image in the swapchain frameBuffers.resize(swapChain.imageCount); for (size_t i = 0; i < frameBuffers.size(); i++) { std::array attachments; attachments[0] = swapChain.buffers[i].view; // Color attachment is the view of the swapchain image attachments[1] = depthStencil.view; // Depth/Stencil attachment is the same for all frame buffers VkFramebufferCreateInfo frameBufferCreateInfo = {}; frameBufferCreateInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO; // All frame buffers use the same renderpass setup frameBufferCreateInfo.renderPass = renderPass; frameBufferCreateInfo.attachmentCount = static_cast(attachments.size()); frameBufferCreateInfo.pAttachments = attachments.data(); frameBufferCreateInfo.width = width; frameBufferCreateInfo.height = height; frameBufferCreateInfo.layers = 1; // Create the framebuffer VK_CHECK_RESULT(vkCreateFramebuffer(device, &frameBufferCreateInfo, nullptr, &frameBuffers[i])); } } // Render pass setup // Render passes are a new concept in Vulkan. They describe the attachments used during rendering and may contain multiple subpasses with attachment dependencies // This allows the driver to know up-front what the rendering will look like and is a good opportunity to optimize especially on tile-based renderers (with multiple subpasses) // Using sub pass dependencies also adds implicit layout transitions for the attachment used, so we don't need to add explicit image memory barriers to transform them // Note: Override of virtual function in the base class and called from within VulkanExampleBase::prepare void setupRenderPass() { // This example will use a single render pass with one subpass // Descriptors for the attachments used by this renderpass std::array attachments = {}; // Color attachment attachments[0].format = swapChain.colorFormat; // Use the color format selected by the swapchain attachments[0].samples = VK_SAMPLE_COUNT_1_BIT; // We don't use multi sampling in this example attachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; // Clear this attachment at the start of the render pass attachments[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE; // Keep its contents after the render pass is finished (for displaying it) attachments[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; // We don't use stencil, so don't care for load attachments[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; // Same for store attachments[0].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; // Layout at render pass start. Initial doesn't matter, so we use undefined attachments[0].finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; // Layout to which the attachment is transitioned when the render pass is finished // As we want to present the color buffer to the swapchain, we transition to PRESENT_KHR // Depth attachment attachments[1].format = depthFormat; // A proper depth format is selected in the example base attachments[1].samples = VK_SAMPLE_COUNT_1_BIT; attachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; // Clear depth at start of first subpass attachments[1].storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; // We don't need depth after render pass has finished (DONT_CARE may result in better performance) attachments[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; // No stencil attachments[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; // No Stencil attachments[1].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; // Layout at render pass start. Initial doesn't matter, so we use undefined attachments[1].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; // Transition to depth/stencil attachment // Setup attachment references VkAttachmentReference colorReference = {}; colorReference.attachment = 0; // Attachment 0 is color colorReference.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; // Attachment layout used as color during the subpass VkAttachmentReference depthReference = {}; depthReference.attachment = 1; // Attachment 1 is color depthReference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; // Attachment used as depth/stencil used during the subpass // Setup a single subpass reference VkSubpassDescription subpassDescription = {}; subpassDescription.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; subpassDescription.colorAttachmentCount = 1; // Subpass uses one color attachment subpassDescription.pColorAttachments = &colorReference; // Reference to the color attachment in slot 0 subpassDescription.pDepthStencilAttachment = &depthReference; // Reference to the depth attachment in slot 1 subpassDescription.inputAttachmentCount = 0; // Input attachments can be used to sample from contents of a previous subpass subpassDescription.pInputAttachments = nullptr; // (Input attachments not used by this example) subpassDescription.preserveAttachmentCount = 0; // Preserved attachments can be used to loop (and preserve) attachments through subpasses subpassDescription.pPreserveAttachments = nullptr; // (Preserve attachments not used by this example) subpassDescription.pResolveAttachments = nullptr; // Resolve attachments are resolved at the end of a sub pass and can be used for e.g. multi sampling // Setup subpass dependencies // These will add the implicit attachment layout transitions specified by the attachment descriptions // The actual usage layout is preserved through the layout specified in the attachment reference // Each subpass dependency will introduce a memory and execution dependency between the source and dest subpass described by // srcStageMask, dstStageMask, srcAccessMask, dstAccessMask (and dependencyFlags is set) // Note: VK_SUBPASS_EXTERNAL is a special constant that refers to all commands executed outside of the actual renderpass) std::array dependencies; // Does the transition from final to initial layout for the depth an color attachments // Depth attachment dependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL; dependencies[0].dstSubpass = 0; dependencies[0].srcStageMask = VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT; dependencies[0].dstStageMask = VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT; dependencies[0].srcAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT; dependencies[0].dstAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT; dependencies[0].dependencyFlags = 0; // Color attachment dependencies[1].srcSubpass = VK_SUBPASS_EXTERNAL; dependencies[1].dstSubpass = 0; dependencies[1].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; dependencies[1].dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; dependencies[1].srcAccessMask = 0; dependencies[1].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_READ_BIT; dependencies[1].dependencyFlags = 0; // Create the actual renderpass VkRenderPassCreateInfo renderPassInfo = {}; renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO; renderPassInfo.attachmentCount = static_cast(attachments.size()); // Number of attachments used by this render pass renderPassInfo.pAttachments = attachments.data(); // Descriptions of the attachments used by the render pass renderPassInfo.subpassCount = 1; // We only use one subpass in this example renderPassInfo.pSubpasses = &subpassDescription; // Description of that subpass renderPassInfo.dependencyCount = static_cast(dependencies.size()); // Number of subpass dependencies renderPassInfo.pDependencies = dependencies.data(); // Subpass dependencies used by the render pass VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassInfo, nullptr, &renderPass)); } // Vulkan loads its shaders from an immediate binary representation called SPIR-V // Shaders are compiled offline from e.g. GLSL using the reference glslang compiler // This function loads such a shader from a binary file and returns a shader module structure VkShaderModule loadSPIRVShader(std::string filename) { size_t shaderSize; char* shaderCode = NULL; #if defined(__ANDROID__) // Load shader from compressed asset AAsset* asset = AAssetManager_open(androidApp->activity->assetManager, filename.c_str(), AASSET_MODE_STREAMING); assert(asset); shaderSize = AAsset_getLength(asset); assert(shaderSize > 0); shaderCode = new char[shaderSize]; AAsset_read(asset, shaderCode, shaderSize); AAsset_close(asset); #else std::ifstream is(filename, std::ios::binary | std::ios::in | std::ios::ate); if (is.is_open()) { shaderSize = is.tellg(); is.seekg(0, std::ios::beg); // Copy file contents into a buffer shaderCode = new char[shaderSize]; is.read(shaderCode, shaderSize); is.close(); assert(shaderSize > 0); } #endif if (shaderCode) { // Create a new shader module that will be used for pipeline creation VkShaderModuleCreateInfo moduleCreateInfo{}; moduleCreateInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO; moduleCreateInfo.codeSize = shaderSize; moduleCreateInfo.pCode = (uint32_t*)shaderCode; VkShaderModule shaderModule; VK_CHECK_RESULT(vkCreateShaderModule(device, &moduleCreateInfo, NULL, &shaderModule)); delete[] shaderCode; return shaderModule; } else { std::cerr << "Error: Could not open shader file \"" << filename << "\"" << std::endl; return VK_NULL_HANDLE; } } void preparePipelines() { // Create the graphics pipeline used in this example // Vulkan uses the concept of rendering pipelines to encapsulate fixed states, replacing OpenGL's complex state machine // A pipeline is then stored and hashed on the GPU making pipeline changes very fast // Note: There are still a few dynamic states that are not directly part of the pipeline (but the info that they are used is) VkGraphicsPipelineCreateInfo pipelineCreateInfo = {}; pipelineCreateInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO; // The layout used for this pipeline (can be shared among multiple pipelines using the same layout) pipelineCreateInfo.layout = pipelineLayout; // Renderpass this pipeline is attached to pipelineCreateInfo.renderPass = renderPass; // Construct the different states making up the pipeline // Input assembly state describes how primitives are assembled // This pipeline will assemble vertex data as a triangle lists (though we only use one triangle) VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = {}; inputAssemblyState.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO; inputAssemblyState.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST; // Rasterization state VkPipelineRasterizationStateCreateInfo rasterizationState = {}; rasterizationState.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO; rasterizationState.polygonMode = VK_POLYGON_MODE_FILL; rasterizationState.cullMode = VK_CULL_MODE_NONE; rasterizationState.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE; rasterizationState.depthClampEnable = VK_FALSE; rasterizationState.rasterizerDiscardEnable = VK_FALSE; rasterizationState.depthBiasEnable = VK_FALSE; rasterizationState.lineWidth = 1.0f; // Color blend state describes how blend factors are calculated (if used) // We need one blend attachment state per color attachment (even if blending is not used) VkPipelineColorBlendAttachmentState blendAttachmentState[1] = {}; blendAttachmentState[0].colorWriteMask = 0xf; blendAttachmentState[0].blendEnable = VK_FALSE; VkPipelineColorBlendStateCreateInfo colorBlendState = {}; colorBlendState.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO; colorBlendState.attachmentCount = 1; colorBlendState.pAttachments = blendAttachmentState; // Viewport state sets the number of viewports and scissor used in this pipeline // Note: This is actually overridden by the dynamic states (see below) VkPipelineViewportStateCreateInfo viewportState = {}; viewportState.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO; viewportState.viewportCount = 1; viewportState.scissorCount = 1; // Enable dynamic states // Most states are baked into the pipeline, but there are still a few dynamic states that can be changed within a command buffer // To be able to change these we need do specify which dynamic states will be changed using this pipeline. Their actual states are set later on in the command buffer. // For this example we will set the viewport and scissor using dynamic states std::vector dynamicStateEnables; dynamicStateEnables.push_back(VK_DYNAMIC_STATE_VIEWPORT); dynamicStateEnables.push_back(VK_DYNAMIC_STATE_SCISSOR); VkPipelineDynamicStateCreateInfo dynamicState = {}; dynamicState.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO; dynamicState.pDynamicStates = dynamicStateEnables.data(); dynamicState.dynamicStateCount = static_cast(dynamicStateEnables.size()); // Depth and stencil state containing depth and stencil compare and test operations // We only use depth tests and want depth tests and writes to be enabled and compare with less or equal VkPipelineDepthStencilStateCreateInfo depthStencilState = {}; depthStencilState.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO; depthStencilState.depthTestEnable = VK_TRUE; depthStencilState.depthWriteEnable = VK_TRUE; depthStencilState.depthCompareOp = VK_COMPARE_OP_LESS_OR_EQUAL; depthStencilState.depthBoundsTestEnable = VK_FALSE; depthStencilState.back.failOp = VK_STENCIL_OP_KEEP; depthStencilState.back.passOp = VK_STENCIL_OP_KEEP; depthStencilState.back.compareOp = VK_COMPARE_OP_ALWAYS; depthStencilState.stencilTestEnable = VK_FALSE; depthStencilState.front = depthStencilState.back; // Multi sampling state // This example does not make use of multi sampling (for anti-aliasing), the state must still be set and passed to the pipeline VkPipelineMultisampleStateCreateInfo multisampleState = {}; multisampleState.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO; multisampleState.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT; multisampleState.pSampleMask = nullptr; // Vertex input descriptions // Specifies the vertex input parameters for a pipeline // Vertex input binding // This example uses a single vertex input binding at binding point 0 (see vkCmdBindVertexBuffers) VkVertexInputBindingDescription vertexInputBinding = {}; vertexInputBinding.binding = 0; vertexInputBinding.stride = sizeof(Vertex); vertexInputBinding.inputRate = VK_VERTEX_INPUT_RATE_VERTEX; // Input attribute bindings describe shader attribute locations and memory layouts std::array vertexInputAttributs; // These match the following shader layout (see triangle.vert): // layout (location = 0) in vec3 inPos; // layout (location = 1) in vec3 inColor; // Attribute location 0: Position vertexInputAttributs[0].binding = 0; vertexInputAttributs[0].location = 0; // Position attribute is three 32 bit signed (SFLOAT) floats (R32 G32 B32) vertexInputAttributs[0].format = VK_FORMAT_R32G32B32_SFLOAT; vertexInputAttributs[0].offset = offsetof(Vertex, position); // Attribute location 1: Color vertexInputAttributs[1].binding = 0; vertexInputAttributs[1].location = 1; // Color attribute is three 32 bit signed (SFLOAT) floats (R32 G32 B32) vertexInputAttributs[1].format = VK_FORMAT_R32G32B32_SFLOAT; vertexInputAttributs[1].offset = offsetof(Vertex, color); // Vertex input state used for pipeline creation VkPipelineVertexInputStateCreateInfo vertexInputState = {}; vertexInputState.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO; vertexInputState.vertexBindingDescriptionCount = 1; vertexInputState.pVertexBindingDescriptions = &vertexInputBinding; vertexInputState.vertexAttributeDescriptionCount = 2; vertexInputState.pVertexAttributeDescriptions = vertexInputAttributs.data(); // Shaders std::array shaderStages{}; // Vertex shader shaderStages[0].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; // Set pipeline stage for this shader shaderStages[0].stage = VK_SHADER_STAGE_VERTEX_BIT; // Load binary SPIR-V shader shaderStages[0].module = loadSPIRVShader(getHomeworkShadersPath() + "homework0/homework0.vert.spv"); // Main entry point for the shader shaderStages[0].pName = "main"; assert(shaderStages[0].module != VK_NULL_HANDLE); // Fragment shader shaderStages[1].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; // Set pipeline stage for this shader shaderStages[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT; // Load binary SPIR-V shader shaderStages[1].module = loadSPIRVShader(getHomeworkShadersPath() + "homework0/homework0.frag.spv"); // Main entry point for the shader shaderStages[1].pName = "main"; assert(shaderStages[1].module != VK_NULL_HANDLE); // Set pipeline shader stage info pipelineCreateInfo.stageCount = static_cast(shaderStages.size()); pipelineCreateInfo.pStages = shaderStages.data(); // Assign the pipeline states to the pipeline creation info structure pipelineCreateInfo.pVertexInputState = &vertexInputState; pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState; pipelineCreateInfo.pRasterizationState = &rasterizationState; pipelineCreateInfo.pColorBlendState = &colorBlendState; pipelineCreateInfo.pMultisampleState = &multisampleState; pipelineCreateInfo.pViewportState = &viewportState; pipelineCreateInfo.pDepthStencilState = &depthStencilState; pipelineCreateInfo.pDynamicState = &dynamicState; // Create rendering pipeline using the specified states VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipeline)); // Shader modules are no longer needed once the graphics pipeline has been created vkDestroyShaderModule(device, shaderStages[0].module, nullptr); vkDestroyShaderModule(device, shaderStages[1].module, nullptr); } void prepareUniformBuffers() { // Prepare and initialize a uniform buffer block containing shader uniforms // Single uniforms like in OpenGL are no longer present in Vulkan. All Shader uniforms are passed via uniform buffer blocks VkMemoryRequirements memReqs; // Vertex shader uniform buffer block VkBufferCreateInfo bufferInfo = {}; VkMemoryAllocateInfo allocInfo = {}; allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; allocInfo.pNext = nullptr; allocInfo.allocationSize = 0; allocInfo.memoryTypeIndex = 0; bufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; bufferInfo.size = sizeof(uboVS); // This buffer will be used as a uniform buffer bufferInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT; // Create a new buffer VK_CHECK_RESULT(vkCreateBuffer(device, &bufferInfo, nullptr, &uniformBufferVS.buffer)); // Get memory requirements including size, alignment and memory type vkGetBufferMemoryRequirements(device, uniformBufferVS.buffer, &memReqs); allocInfo.allocationSize = memReqs.size; // Get the memory type index that supports host visible memory access // Most implementations offer multiple memory types and selecting the correct one to allocate memory from is crucial // We also want the buffer to be host coherent so we don't have to flush (or sync after every update. // Note: This may affect performance so you might not want to do this in a real world application that updates buffers on a regular base allocInfo.memoryTypeIndex = getMemoryTypeIndex(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT); // Allocate memory for the uniform buffer VK_CHECK_RESULT(vkAllocateMemory(device, &allocInfo, nullptr, &(uniformBufferVS.memory))); // Bind memory to buffer VK_CHECK_RESULT(vkBindBufferMemory(device, uniformBufferVS.buffer, uniformBufferVS.memory, 0)); // Store information in the uniform's descriptor that is used by the descriptor set uniformBufferVS.descriptor.buffer = uniformBufferVS.buffer; uniformBufferVS.descriptor.offset = 0; uniformBufferVS.descriptor.range = sizeof(uboVS); updateUniformBuffers(); } void updateUniformBuffers() { // Pass matrices to the shaders uboVS.projectionMatrix = camera.matrices.perspective; uboVS.viewMatrix = camera.matrices.view; uboVS.modelMatrix = glm::mat4(1.0f); // Map uniform buffer and update it uint8_t *pData; VK_CHECK_RESULT(vkMapMemory(device, uniformBufferVS.memory, 0, sizeof(uboVS), 0, (void **)&pData)); memcpy(pData, &uboVS, sizeof(uboVS)); // Unmap after data has been copied // Note: Since we requested a host coherent memory type for the uniform buffer, the write is instantly visible to the GPU vkUnmapMemory(device, uniformBufferVS.memory); } void prepare() { VulkanExampleBase::prepare(); prepareSynchronizationPrimitives(); prepareVertices(USE_STAGING); prepareUniformBuffers(); setupDescriptorSetLayout(); preparePipelines(); setupDescriptorPool(); setupDescriptorSet(); buildCommandBuffers(); prepared = true; } virtual void render() { if (!prepared) return; draw(); } virtual void viewChanged() { // This function is called by the base example class each time the view is changed by user input updateUniformBuffers(); } }; // OS specific macros for the example main entry points // Most of the code base is shared for the different supported operating systems, but stuff like message handling differs #if defined(_WIN32) // Windows entry point VulkanExample *vulkanExample; LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam) { if (vulkanExample != NULL) { vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam); } return (DefWindowProc(hWnd, uMsg, wParam, lParam)); } int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow) { for (size_t i = 0; i < __argc; i++) { VulkanExample::args.push_back(__argv[i]); }; vulkanExample = new VulkanExample(); vulkanExample->initVulkan(); vulkanExample->setupWindow(hInstance, WndProc); vulkanExample->prepare(); vulkanExample->renderLoop(); delete(vulkanExample); return 0; } #elif defined(__ANDROID__) // Android entry point VulkanExample *vulkanExample; void android_main(android_app* state) { vulkanExample = new VulkanExample(); state->userData = vulkanExample; state->onAppCmd = VulkanExample::handleAppCommand; state->onInputEvent = VulkanExample::handleAppInput; androidApp = state; vulkanExample->renderLoop(); delete(vulkanExample); } #elif defined(_DIRECT2DISPLAY) // Linux entry point with direct to display wsi // Direct to Displays (D2D) is used on embedded platforms VulkanExample *vulkanExample; static void handleEvent() { } int main(const int argc, const char *argv[]) { for (size_t i = 0; i < argc; i++) { VulkanExample::args.push_back(argv[i]); }; vulkanExample = new VulkanExample(); vulkanExample->initVulkan(); vulkanExample->prepare(); vulkanExample->renderLoop(); delete(vulkanExample); return 0; } #elif defined(VK_USE_PLATFORM_DIRECTFB_EXT) VulkanExample *vulkanExample; static void handleEvent(const DFBWindowEvent *event) { if (vulkanExample != NULL) { vulkanExample->handleEvent(event); } } int main(const int argc, const char *argv[]) { for (size_t i = 0; i < argc; i++) { VulkanExample::args.push_back(argv[i]); }; vulkanExample = new VulkanExample(); vulkanExample->initVulkan(); vulkanExample->setupWindow(); vulkanExample->prepare(); vulkanExample->renderLoop(); delete(vulkanExample); return 0; } #elif defined(VK_USE_PLATFORM_WAYLAND_KHR) VulkanExample *vulkanExample; int main(const int argc, const char *argv[]) { for (size_t i = 0; i < argc; i++) { VulkanExample::args.push_back(argv[i]); }; vulkanExample = new VulkanExample(); vulkanExample->initVulkan(); vulkanExample->setupWindow(); vulkanExample->prepare(); vulkanExample->renderLoop(); delete(vulkanExample); return 0; } #elif defined(__linux__) || defined(__FreeBSD__) // Linux entry point VulkanExample *vulkanExample; #if defined(VK_USE_PLATFORM_XCB_KHR) static void handleEvent(const xcb_generic_event_t *event) { if (vulkanExample != NULL) { vulkanExample->handleEvent(event); } } #else static void handleEvent() { } #endif int main(const int argc, const char *argv[]) { for (size_t i = 0; i < argc; i++) { VulkanExample::args.push_back(argv[i]); }; vulkanExample = new VulkanExample(); vulkanExample->initVulkan(); vulkanExample->setupWindow(); vulkanExample->prepare(); vulkanExample->renderLoop(); delete(vulkanExample); return 0; } #elif (defined(VK_USE_PLATFORM_MACOS_MVK) && defined(VK_EXAMPLE_XCODE_GENERATED)) VulkanExample *vulkanExample; int main(const int argc, const char *argv[]) { @autoreleasepool { for (size_t i = 0; i < argc; i++) { VulkanExample::args.push_back(argv[i]); }; vulkanExample = new VulkanExample(); vulkanExample->initVulkan(); vulkanExample->setupWindow(nullptr); vulkanExample->prepare(); vulkanExample->renderLoop(); delete(vulkanExample); } return 0; } #endif