#version 450 layout (location = 0) in vec3 inPos; layout (location = 0) out vec4 outColor; layout (binding = 0) uniform samplerCube samplerEnv; layout(push_constant) uniform PushConsts { layout (offset = 64) float roughness; layout (offset = 68) uint numSamples; } consts; const float PI = 3.1415926536; // Based omn http://byteblacksmith.com/improvements-to-the-canonical-one-liner-glsl-rand-for-opengl-es-2-0/ float random(vec2 co) { float a = 12.9898; float b = 78.233; float c = 43758.5453; float dt= dot(co.xy ,vec2(a,b)); float sn= mod(dt,3.14); return fract(sin(sn) * c); } vec2 hammersley2d(uint i, uint N) { // Radical inverse based on http://holger.dammertz.org/stuff/notes_HammersleyOnHemisphere.html uint bits = (i << 16u) | (i >> 16u); bits = ((bits & 0x55555555u) << 1u) | ((bits & 0xAAAAAAAAu) >> 1u); bits = ((bits & 0x33333333u) << 2u) | ((bits & 0xCCCCCCCCu) >> 2u); bits = ((bits & 0x0F0F0F0Fu) << 4u) | ((bits & 0xF0F0F0F0u) >> 4u); bits = ((bits & 0x00FF00FFu) << 8u) | ((bits & 0xFF00FF00u) >> 8u); float rdi = float(bits) * 2.3283064365386963e-10; return vec2(float(i) /float(N), rdi); } // Based on http://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_slides.pdf vec3 importanceSample_GGX(vec2 Xi, float roughness, vec3 normal) { // Maps a 2D point to a hemisphere with spread based on roughness float alpha = roughness * roughness; float phi = 2.0 * PI * Xi.x + random(normal.xz) * 0.1; float cosTheta = sqrt((1.0 - Xi.y) / (1.0 + (alpha*alpha - 1.0) * Xi.y)); float sinTheta = sqrt(1.0 - cosTheta * cosTheta); vec3 H = vec3(sinTheta * cos(phi), sinTheta * sin(phi), cosTheta); // Tangent space vec3 up = abs(normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(1.0, 0.0, 0.0); vec3 tangentX = normalize(cross(up, normal)); vec3 tangentY = normalize(cross(normal, tangentX)); // Convert to world Space return normalize(tangentX * H.x + tangentY * H.y + normal * H.z); } // Normal Distribution function float D_GGX(float dotNH, float roughness) { float alpha = roughness * roughness; float alpha2 = alpha * alpha; float denom = dotNH * dotNH * (alpha2 - 1.0) + 1.0; return (alpha2)/(PI * denom*denom); } vec3 prefilterEnvMap(vec3 R, float roughness) { vec3 N = R; vec3 V = R; vec3 color = vec3(0.0); float totalWeight = 0.0; float envMapDim = float(textureSize(samplerEnv, 0).s); for(uint i = 0u; i < consts.numSamples; i++) { vec2 Xi = hammersley2d(i, consts.numSamples); vec3 H = importanceSample_GGX(Xi, roughness, N); vec3 L = 2.0 * dot(V, H) * H - V; float dotNL = clamp(dot(N, L), 0.0, 1.0); if(dotNL > 0.0) { // Filtering based on https://placeholderart.wordpress.com/2015/07/28/implementation-notes-runtime-environment-map-filtering-for-image-based-lighting/ float dotNH = clamp(dot(N, H), 0.0, 1.0); float dotVH = clamp(dot(V, H), 0.0, 1.0); // Probability Distribution Function float pdf = D_GGX(dotNH, roughness) * dotNH / (4.0 * dotVH) + 0.0001; // Slid angle of current smple float omegaS = 1.0 / (float(consts.numSamples) * pdf); // Solid angle of 1 pixel across all cube faces float omegaP = 4.0 * PI / (6.0 * envMapDim * envMapDim); // Biased (+1.0) mip level for better result float mipLevel = roughness == 0.0 ? 0.0 : max(0.5 * log2(omegaS / omegaP) + 1.0, 0.0f); color += textureLod(samplerEnv, L, mipLevel).rgb * dotNL; totalWeight += dotNL; } } return (color / totalWeight); } void main() { vec3 N = normalize(inPos); outColor = vec4(prefilterEnvMap(N, consts.roughness), 1.0); }