/* * Vulkan Example - glTF scene loading and rendering * * Copyright (C) 2020-2022 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ /* * Shows how to load and display a simple scene from a glTF file * Note that this isn't a complete glTF loader and only basic functions are shown here * This means no complex materials, no animations, no skins, etc. * For details on how glTF 2.0 works, see the official spec at https://github.com/KhronosGroup/glTF/tree/master/specification/2.0 * * Other samples will load models using a dedicated model loader with more features (see base/VulkanglTFModel.hpp) * * If you are looking for a complete glTF implementation, check out https://github.com/SaschaWillems/Vulkan-glTF-PBR/ */ #include "render.h" /* glTF loading functions The following functions take a glTF input model loaded via tinyglTF and convert all required data into our own structure */ void VulkanglTFModel::loadImages(tinygltf::Model& input) { // Images can be stored inside the glTF (which is the case for the sample model), so instead of directly // loading them from disk, we fetch them from the glTF loader and upload the buffers images.resize(input.images.size()); for (size_t i = 0; i < input.images.size(); i++) { tinygltf::Image& glTFImage = input.images[i]; // Get the image data from the glTF loader unsigned char* buffer = nullptr; VkDeviceSize bufferSize = 0; bool deleteBuffer = false; // We convert RGB-only images to RGBA, as most devices don't support RGB-formats in Vulkan if (glTFImage.component == 3) { bufferSize = glTFImage.width * glTFImage.height * 4; buffer = new unsigned char[bufferSize]; unsigned char* rgba = buffer; unsigned char* rgb = &glTFImage.image[0]; for (size_t i = 0; i < glTFImage.width * glTFImage.height; ++i) { memcpy(rgba, rgb, sizeof(unsigned char) * 3); rgba += 4; rgb += 3; } deleteBuffer = true; } else { buffer = &glTFImage.image[0]; bufferSize = glTFImage.image.size(); } // Load texture from image buffer images[i].texture.fromBuffer(buffer, bufferSize, VK_FORMAT_R8G8B8A8_UNORM, glTFImage.width, glTFImage.height, vulkanDevice, copyQueue); if (deleteBuffer) { delete[] buffer; } } } void VulkanglTFModel::loadTextures(tinygltf::Model& input) { textures.resize(input.textures.size()); for (size_t i = 0; i < input.textures.size(); i++) { textures[i].imageIndex = input.textures[i].source; } } void VulkanglTFModel::loadAnimations(tinygltf::Model& input) { animations.resize(input.animations.size()); for (size_t i = 0; i < input.animations.size(); ++i) { auto glTFAnimation = input.animations[i]; animations[i].name = glTFAnimation.name; //Samplers animations[i].samplers.resize(glTFAnimation.samplers.size()); for (size_t j = 0; j < glTFAnimation.samplers.size(); ++j) { auto glTFSampler = glTFAnimation.samplers[j]; auto& dstSampler = animations[i].samplers[j]; dstSampler.interpolation = glTFSampler.interpolation; // Read sampler keyframe input time values { const auto& accessor = input.accessors[glTFSampler.input]; const auto& bufferView = input.bufferViews[accessor.bufferView]; const auto& buffer = input.buffers[bufferView.buffer]; const void* dataPtr = &buffer.data[accessor.byteOffset + bufferView.byteOffset]; const float* buf = static_cast(dataPtr); for (size_t index = 0; index < accessor.count; ++index) { dstSampler.inputs.push_back(buf[index]); } // Adjust animation's start and end times for (auto input : animations[i].samplers[j].inputs) { if (input < animations[i].start) { animations[i].start = input; }; if (input > animations[i].end) { animations[i].end = input; } } } // Read sampler keyframe output translate/rotate/scale values { const auto& accessor = input.accessors[glTFSampler.output]; const auto& bufferView = input.bufferViews[accessor.bufferView]; const auto& buffer = input.buffers[bufferView.buffer]; const void* dataPtr = &buffer.data[accessor.byteOffset + bufferView.byteOffset]; switch (accessor.type) { case TINYGLTF_TYPE_VEC3: { const glm::vec3* buf = static_cast(dataPtr); for (size_t index = 0; index < accessor.count; index++) { dstSampler.outputsVec4.push_back(glm::vec4(buf[index], 0.0f)); } break; } case TINYGLTF_TYPE_VEC4: { const glm::vec4* buf = static_cast(dataPtr); for (size_t index = 0; index < accessor.count; index++) { dstSampler.outputsVec4.push_back(buf[index]); } break; } default: { std::cout << "unknown type" << std::endl; break; } } } } animations[i].channels.resize(glTFAnimation.channels.size()); for (size_t j = 0; j < glTFAnimation.channels.size(); ++j) { auto glTFChannel = glTFAnimation.channels[j]; auto& dstChannel = animations[i].channels[j]; dstChannel.path = glTFChannel.target_path; dstChannel.samplerIndex = glTFChannel.sampler; dstChannel.node = nodeFromIndex(glTFChannel.target_node); } } } void VulkanglTFModel::loadMaterials(tinygltf::Model& input) { materials.resize(input.materials.size()); for (size_t i = 0; i < input.materials.size(); i++) { // We only read the most basic properties required for our sample tinygltf::Material glTFMaterial = input.materials[i]; // Get the base color factor if (glTFMaterial.values.find("baseColorFactor") != glTFMaterial.values.end()) { materials[i].baseColorFactor = glm::make_vec4(glTFMaterial.values["baseColorFactor"].ColorFactor().data()); } // Get base color texture index if (glTFMaterial.values.find("baseColorTexture") != glTFMaterial.values.end()) { materials[i].baseColorTextureIndex = glTFMaterial.values["baseColorTexture"].TextureIndex(); } if (glTFMaterial.values.find("metallicRoughnessTexture") != glTFMaterial.values.end()) { materials[i].matalicRoughTextureIndex = glTFMaterial.values["metallicRoughnessTexture"].TextureIndex(); } if (glTFMaterial.additionalValues.find("normalTexture") != glTFMaterial.additionalValues.end()) { materials[i].normalMapTextureIndex = glTFMaterial.additionalValues["normalTexture"].TextureIndex(); } if (glTFMaterial.emissiveTexture.index != -1) { materials[i].emissiveTextureIndex = glTFMaterial.emissiveTexture.index; } if (glTFMaterial.emissiveFactor.size() == 3) { materials[i].materialData.values.emissiveFactor = glm::make_vec3(glTFMaterial.emissiveFactor.data()); } if (glTFMaterial.values.find("baseColorFactor") != glTFMaterial.values.end()) { materials[i].materialData.values.baseColorFactor = glm::make_vec4(glTFMaterial.values["baseColorFactor"].ColorFactor().data()); } } } void VulkanglTFModel::loadNode(const tinygltf::Node& inputNode, const tinygltf::Model& input, VulkanglTFModel::Node* parent, uint32_t nodeIndex,std::vector& indexBuffer, std::vector& vertexBuffer) { VulkanglTFModel::Node* node = new VulkanglTFModel::Node{}; node->matrix = glm::mat4(1.0f); node->parent = parent; node->index = nodeIndex; // Get the local node matrix // It's either made up from translation, rotation, scale or a 4x4 matrix if (inputNode.translation.size() == 3) { node->matrix = glm::translate(node->matrix, glm::vec3(glm::make_vec3(inputNode.translation.data()))); } if (inputNode.rotation.size() == 4) { glm::quat q = glm::make_quat(inputNode.rotation.data()); node->matrix *= glm::mat4(q); } if (inputNode.scale.size() == 3) { node->matrix = glm::scale(node->matrix, glm::vec3(glm::make_vec3(inputNode.scale.data()))); } if (inputNode.matrix.size() == 16) { node->matrix = glm::make_mat4x4(inputNode.matrix.data()); }; // Load node's children if (inputNode.children.size() > 0) { for (size_t i = 0; i < inputNode.children.size(); i++) { loadNode(input.nodes[inputNode.children[i]], input , node, inputNode.children[i],indexBuffer, vertexBuffer); } } // If the node contains mesh data, we load vertices and indices from the buffers // In glTF this is done via accessors and buffer views if (inputNode.mesh > -1) { const tinygltf::Mesh mesh = input.meshes[inputNode.mesh]; // Iterate through all primitives of this node's mesh for (size_t i = 0; i < mesh.primitives.size(); i++) { const tinygltf::Primitive& glTFPrimitive = mesh.primitives[i]; uint32_t firstIndex = static_cast(indexBuffer.size()); uint32_t vertexStart = static_cast(vertexBuffer.size()); uint32_t indexCount = 0; // Vertices { const float* positionBuffer = nullptr; const float* normalsBuffer = nullptr; const float* texCoordsBuffer = nullptr; const float* tangentsBuffer = nullptr; size_t vertexCount = 0; // Get buffer data for vertex positions if (glTFPrimitive.attributes.find("POSITION") != glTFPrimitive.attributes.end()) { const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.attributes.find("POSITION")->second]; const tinygltf::BufferView& view = input.bufferViews[accessor.bufferView]; positionBuffer = reinterpret_cast(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset])); vertexCount = accessor.count; } // Get buffer data for vertex normals if (glTFPrimitive.attributes.find("NORMAL") != glTFPrimitive.attributes.end()) { const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.attributes.find("NORMAL")->second]; const tinygltf::BufferView& view = input.bufferViews[accessor.bufferView]; normalsBuffer = reinterpret_cast(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset])); } // Get buffer data for vertex texture coordinates // glTF supports multiple sets, we only load the first one if (glTFPrimitive.attributes.find("TEXCOORD_0") != glTFPrimitive.attributes.end()) { const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.attributes.find("TEXCOORD_0")->second]; const tinygltf::BufferView& view = input.bufferViews[accessor.bufferView]; texCoordsBuffer = reinterpret_cast(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset])); } if (glTFPrimitive.attributes.find("TANGENT") != glTFPrimitive.attributes.end()) { const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.attributes.find("TANGENT")->second]; const tinygltf::BufferView& view = input.bufferViews[accessor.bufferView]; tangentsBuffer = reinterpret_cast(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset])); } // Append data to model's vertex buffer for (size_t v = 0; v < vertexCount; v++) { Vertex vert{}; vert.pos = glm::vec4(glm::make_vec3(&positionBuffer[v * 3]), 1.0f); vert.normal = glm::normalize(glm::vec3(normalsBuffer ? glm::make_vec3(&normalsBuffer[v * 3]) : glm::vec3(0.0f))); vert.uv = texCoordsBuffer ? glm::make_vec2(&texCoordsBuffer[v * 2]) : glm::vec3(0.0f); vert.tangent = tangentsBuffer ? glm::normalize(glm::make_vec3(&tangentsBuffer[v * 4])) : glm::vec3(0.0f); vert.color = glm::vec3(1.0f, 1.0f, nodeIndex);//Temp set index in color attribute vertexBuffer.push_back(vert); } } // Indices { const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.indices]; const tinygltf::BufferView& bufferView = input.bufferViews[accessor.bufferView]; const tinygltf::Buffer& buffer = input.buffers[bufferView.buffer]; indexCount += static_cast(accessor.count); // glTF supports different component types of indices switch (accessor.componentType) { case TINYGLTF_PARAMETER_TYPE_UNSIGNED_INT: { const uint32_t* buf = reinterpret_cast(&buffer.data[accessor.byteOffset + bufferView.byteOffset]); for (size_t index = 0; index < accessor.count; index++) { indexBuffer.push_back(buf[index] + vertexStart); } break; } case TINYGLTF_PARAMETER_TYPE_UNSIGNED_SHORT: { const uint16_t* buf = reinterpret_cast(&buffer.data[accessor.byteOffset + bufferView.byteOffset]); for (size_t index = 0; index < accessor.count; index++) { indexBuffer.push_back(buf[index] + vertexStart); } break; } case TINYGLTF_PARAMETER_TYPE_UNSIGNED_BYTE: { const uint8_t* buf = reinterpret_cast(&buffer.data[accessor.byteOffset + bufferView.byteOffset]); for (size_t index = 0; index < accessor.count; index++) { indexBuffer.push_back(buf[index] + vertexStart); } break; } default: std::cerr << "Index component type " << accessor.componentType << " not supported!" << std::endl; return; } } Primitive primitive{}; primitive.firstIndex = firstIndex; primitive.indexCount = indexCount; primitive.materialIndex = glTFPrimitive.material; node->mesh.primitives.push_back(primitive); } } if (parent) { parent->children.push_back(node); } else { nodes.push_back(node); } } VulkanglTFModel::Node* VulkanglTFModel::findNode(Node* parent, uint32_t index) { Node* nodeFound = nullptr; if (parent->index == index) { return parent; } for (auto& child : parent->children) { nodeFound = findNode(child, index); if (nodeFound) { break; } } return nodeFound; } VulkanglTFModel::Node* VulkanglTFModel::nodeFromIndex(uint32_t index) { Node* nodeFound = nullptr; for (auto& node : nodes) { nodeFound = findNode(node, index); if (nodeFound) { break; } } return nodeFound; } void VulkanglTFModel::updateAnimation(float deltaTime, vks::Buffer& buffer) { constexpr uint32_t activeAnimation = 0; Animation& animation = animations[activeAnimation]; animation.currentTime += deltaTime; if (animation.currentTime > animation.end) { animation.currentTime -= animation.end; } for (auto& channel : animation.channels) { auto& sampler = animation.samplers[channel.samplerIndex]; for (size_t i = 0; i < sampler.inputs.size() - 1; ++i) { if (sampler.interpolation != "LINEAR") { std::cout << "This sample only supports linear interpolations\n"; continue; } if ((animation.currentTime >= sampler.inputs[i]) && (animation.currentTime <= sampler.inputs[i + 1])) { float ratio = (animation.currentTime - sampler.inputs[i]) / (sampler.inputs[i + 1] - sampler.inputs[i]); if (channel.path == "translation") { channel.node->translation = glm::mix(sampler.outputsVec4[i], sampler.outputsVec4[i + 1], ratio); channel.node->bAnimateNode = true; } if (channel.path == "rotation") { glm::quat q1; q1.x = sampler.outputsVec4[i].x; q1.y = sampler.outputsVec4[i].y; q1.z = sampler.outputsVec4[i].z; q1.w = sampler.outputsVec4[i].w; glm::quat q2; q2.x = sampler.outputsVec4[i + 1].x; q2.y = sampler.outputsVec4[i + 1].y; q2.z = sampler.outputsVec4[i + 1].z; q2.w = sampler.outputsVec4[i + 1].w; channel.node->rotation = glm::normalize(glm::slerp(q1, q2, ratio)); channel.node->bAnimateNode = true; } if (channel.path == "scale") { channel.node->scale = glm::mix(sampler.outputsVec4[i], sampler.outputsVec4[i + 1], ratio); channel.node->bAnimateNode = true; } } } } std::vector nodeMatrics(nodeCount); for (auto& node : nodes) { updateNodeMatrix(node, nodeMatrics); } buffer.copyTo(nodeMatrics.data(), nodeCount * sizeof(glm::mat4)); } void VulkanglTFModel::updateNodeMatrix(Node* node, std::vector& nodeMatrics) { nodeMatrics[node->index] = getNodeMatrix(node); for (auto& child : node->children) { updateNodeMatrix(child, nodeMatrics); } } glm::mat4 VulkanglTFModel::getNodeMatrix(Node* node) { glm::mat4 nodeMatrix = node->getLocalMatrix(); Node* currentParent = node->parent; while (currentParent) { nodeMatrix = currentParent->getLocalMatrix() * nodeMatrix; currentParent = currentParent->parent; } return nodeMatrix; } /* glTF rendering functions */ // Draw a single node including child nodes (if present) void VulkanglTFModel::drawNode(VkCommandBuffer commandBuffer, VkPipelineLayout pipelineLayout, VulkanglTFModel::Node* node, bool bPushConstants) { if (node->mesh.primitives.size() > 0) { // Pass the node's matrix via push constants // Traverse the node hierarchy to the top-most parent to get the final matrix of the current node glm::mat4 nodeMatrix = node->matrix; VulkanglTFModel::Node* currentParent = node->parent; while (currentParent) { nodeMatrix = currentParent->matrix * nodeMatrix; currentParent = currentParent->parent; } for (VulkanglTFModel::Primitive& primitive : node->mesh.primitives) { if (primitive.indexCount > 0) { // Get the texture index for this primitive if (textures.size() > 0) { VulkanglTFModel::Texture texture = textures[materials[primitive.materialIndex].baseColorTextureIndex]; auto normalMap = textures[materials[primitive.materialIndex].normalMapTextureIndex]; auto roughMetalMap = textures[materials[primitive.materialIndex].matalicRoughTextureIndex]; if (materials[primitive.materialIndex].emissiveTextureIndex >= 0) { auto emissiveMap = textures[materials[primitive.materialIndex].emissiveTextureIndex]; vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 4, 1, &images[emissiveMap.imageIndex].descriptorSet, 0, nullptr); } // Bind the descriptor for the current primitive's texture vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 1, 1, &images[texture.imageIndex].descriptorSet, 0, nullptr); vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 2, 1, &images[normalMap.imageIndex].descriptorSet, 0, nullptr); vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 3, 1, &images[roughMetalMap.imageIndex].descriptorSet, 0, nullptr); vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 5, 1, &materials[primitive.materialIndex].materialData.descriptorSet, 0, nullptr); } vkCmdDrawIndexed(commandBuffer, primitive.indexCount, 1, primitive.firstIndex, 0, 0); } } } for (auto& child : node->children) { drawNode(commandBuffer, pipelineLayout, child, bPushConstants); } } // Draw the glTF scene starting at the top-level-nodes void VulkanglTFModel::draw(VkCommandBuffer commandBuffer, VkPipelineLayout pipelineLayout, bool flag = true) { // All vertices and indices are stored in single buffers, so we only need to bind once VkDeviceSize offsets[1] = { 0 }; vkCmdBindVertexBuffers(commandBuffer, 0, 1, &vertices.buffer, offsets); vkCmdBindIndexBuffer(commandBuffer, indices.buffer, 0, VK_INDEX_TYPE_UINT32); // Render all nodes at top-level for (auto& node : nodes) { drawNode(commandBuffer, pipelineLayout, node, flag); } } VulkanExample::VulkanExample(): VulkanExampleBase(ENABLE_VALIDATION) { title = "homework1"; camera.type = Camera::CameraType::lookat; camera.flipY = true; camera.setPosition(glm::vec3(0.0f, -0.1f, -1.0f)); camera.setRotation(glm::vec3(0.0f, 45.0f, 0.0f)); camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f); } void VulkanExample::getEnabledFeatures() { // Fill mode non solid is required for wireframe display if (deviceFeatures.fillModeNonSolid) { enabledFeatures.fillModeNonSolid = VK_TRUE; }; } void VulkanExample::setupFrameBuffer() { VulkanExampleBase::setupFrameBuffer(); if (pbrFrameBuffer.bCreate && (pbrFrameBuffer.fbo.width != width || pbrFrameBuffer.fbo.height != height)) { pbrFrameBuffer.color.destroy(device); pbrFrameBuffer.depth.destroy(device); pbrFrameBuffer.fbo.destroy(device); vkDestroySampler(device, colorSampler, nullptr); } //Create image color attachment pbrFrameBuffer.fbo.setSize(width, height); VkFormat attDepthFormat; VkBool32 validDepthFormat = vks::tools::getSupportedDepthFormat(physicalDevice, &attDepthFormat); assert(validDepthFormat); createAttachment(VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, &pbrFrameBuffer.color, width, height); createAttachment(attDepthFormat, VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, &pbrFrameBuffer.depth, width, height); { std::array attachs = {}; for (uint32_t i = 0; i < static_cast(attachs.size()); ++i) { attachs[i].samples = VK_SAMPLE_COUNT_1_BIT; attachs[i].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; attachs[i].storeOp = VK_ATTACHMENT_STORE_OP_STORE; attachs[i].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attachs[i].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attachs[i].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; attachs[i].finalLayout = i == 1 ? VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL : VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; } attachs[0].format = pbrFrameBuffer.color.format; attachs[1].format = pbrFrameBuffer.depth.format; VkAttachmentReference colorReference = {}; colorReference.attachment = 0; colorReference.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; VkAttachmentReference depthReference = {}; depthReference.attachment = 1; depthReference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; VkSubpassDescription subpass = {}; subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; subpass.pColorAttachments = &colorReference; subpass.colorAttachmentCount = 1; subpass.pDepthStencilAttachment = &depthReference; std::array dependencies; //To test src 0 dependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL; dependencies[0].dstSubpass = 0; dependencies[0].srcStageMask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT; dependencies[0].dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; dependencies[0].srcAccessMask = VK_ACCESS_SHADER_READ_BIT; dependencies[0].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; dependencies[0].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT; dependencies[1].srcSubpass = 0; dependencies[1].dstSubpass = VK_SUBPASS_EXTERNAL; dependencies[1].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; dependencies[1].dstStageMask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT; dependencies[1].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; dependencies[1].dstAccessMask = VK_ACCESS_SHADER_READ_BIT; dependencies[1].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT; VkRenderPassCreateInfo renderPassCI = {}; renderPassCI.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO; renderPassCI.pAttachments = attachs.data(); renderPassCI.attachmentCount = static_cast(attachs.size()); renderPassCI.pSubpasses = &subpass; renderPassCI.subpassCount = 1; renderPassCI.pDependencies = dependencies.data(); renderPassCI.dependencyCount = 2; VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassCI, nullptr, &pbrFrameBuffer.fbo.renderPass)); //Create FBO VkImageView attachments[2] = { pbrFrameBuffer.color.imageView, pbrFrameBuffer.depth.imageView }; VkFramebufferCreateInfo fbufCreateInfo = vks::initializers::framebufferCreateInfo(); fbufCreateInfo.renderPass = pbrFrameBuffer.fbo.renderPass; fbufCreateInfo.pAttachments = attachments; fbufCreateInfo.attachmentCount = 2; fbufCreateInfo.width = pbrFrameBuffer.fbo.width; fbufCreateInfo.height = pbrFrameBuffer.fbo.height; fbufCreateInfo.layers = 1; VK_CHECK_RESULT(vkCreateFramebuffer(device, &fbufCreateInfo, nullptr, &pbrFrameBuffer.fbo.frameBuffer)); } //Create Image sampler VkSamplerCreateInfo samplerCI = vks::initializers::samplerCreateInfo(); samplerCI.magFilter = VK_FILTER_NEAREST; samplerCI.minFilter = VK_FILTER_NEAREST; samplerCI.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; samplerCI.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; samplerCI.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; samplerCI.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; //samplerCI.mipLodBias = 0.0f; //samplerCI.maxAnisotropy = 1.0f; samplerCI.minLod = 0.0f; samplerCI.maxLod = 1.0f; samplerCI.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE; VK_CHECK_RESULT(vkCreateSampler(device, &samplerCI, nullptr, &colorSampler)); if (tonemappingDescriptorSet != VK_NULL_HANDLE) //Bad logic { auto imageInfo = vks::initializers::descriptorImageInfo(colorSampler, pbrFrameBuffer.color.imageView, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL); VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(tonemappingDescriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &imageInfo); vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr); } pbrFrameBuffer.bCreate = true; } void VulkanExample::buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = defaultClearColor; clearValues[0].color = { { 0.25f, 0.25f, 0.25f, 1.0f } }; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = pbrFrameBuffer.fbo.renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; const VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f); const VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0); for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { renderPassBeginInfo.framebuffer = pbrFrameBuffer.fbo.frameBuffer; VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); // Bind scene matrices descriptor to set 0 vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.pbrLayout, 0, 1, &descriptorSet, 0, nullptr); vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.pbrLayout, 6, 1, &skinDescriptorSet, 0, nullptr); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, wireframe ? pipelines.wireframe : pipelines.solid); glTFModel.draw(drawCmdBuffers[i], pipelineLayouts.pbrLayout); vkCmdEndRenderPass(drawCmdBuffers[i]); { VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.framebuffer = VulkanExampleBase::frameBuffers[i]; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.tonemappingLayout, 0, 1, &tonemappingDescriptorSet, 0, NULL); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.toneMapping); vkCmdDraw(drawCmdBuffers[i], 3, 1, 0, 0); drawUI(drawCmdBuffers[i]); vkCmdEndRenderPass(drawCmdBuffers[i]); } VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } void VulkanExample::loadglTFFile(std::string filename, VulkanglTFModel& model, bool bSkyboxFlag = false) { tinygltf::Model glTFInput; tinygltf::TinyGLTF gltfContext; std::string error, warning; this->device = device; #if defined(__ANDROID__) // On Android all assets are packed with the apk in a compressed form, so we need to open them using the asset manager // We let tinygltf handle this, by passing the asset manager of our app tinygltf::asset_manager = androidApp->activity->assetManager; #endif bool fileLoaded = gltfContext.LoadASCIIFromFile(&glTFInput, &error, &warning, filename); // Pass some Vulkan resources required for setup and rendering to the glTF model loading class model.vulkanDevice = vulkanDevice; model.copyQueue = queue; std::vector indexBuffer; std::vector vertexBuffer; if (fileLoaded) { model.nodeCount = static_cast(glTFInput.nodes.size()); model.loadImages(glTFInput); model.loadMaterials(glTFInput); model.loadTextures(glTFInput); const tinygltf::Scene& scene = glTFInput.scenes[0]; for (size_t i = 0; i < scene.nodes.size(); i++) { const tinygltf::Node node = glTFInput.nodes[scene.nodes[i]]; model.loadNode(node, glTFInput, nullptr, scene.nodes[i], indexBuffer, vertexBuffer); } model.loadAnimations(glTFInput); } else { vks::tools::exitFatal("Could not open the glTF file.\n\nThe file is part of the additional asset pack.\n\nRun \"download_assets.py\" in the repository root to download the latest version.", -1); return; } // Create and upload vertex and index buffer // We will be using one single vertex buffer and one single index buffer for the whole glTF scene // Primitives (of the glTF model) will then index into these using index offsets size_t vertexBufferSize = vertexBuffer.size() * sizeof(VulkanglTFModel::Vertex); size_t indexBufferSize = indexBuffer.size() * sizeof(uint32_t); model.indices.count = static_cast(indexBuffer.size()); struct StagingBuffer { VkBuffer buffer; VkDeviceMemory memory; } vertexStaging, indexStaging; // Create host visible staging buffers (source) VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, vertexBufferSize, &vertexStaging.buffer, &vertexStaging.memory, vertexBuffer.data())); // Index data VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, indexBufferSize, &indexStaging.buffer, &indexStaging.memory, indexBuffer.data())); // Create device local buffers (target) VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, vertexBufferSize, &model.vertices.buffer, &model.vertices.memory)); VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, indexBufferSize, &model.indices.buffer, &model.indices.memory)); // Copy data from staging buffers (host) do device local buffer (gpu) VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); VkBufferCopy copyRegion = {}; copyRegion.size = vertexBufferSize; vkCmdCopyBuffer( copyCmd, vertexStaging.buffer, model.vertices.buffer, 1, ©Region); copyRegion.size = indexBufferSize; vkCmdCopyBuffer( copyCmd, indexStaging.buffer, model.indices.buffer, 1, ©Region); vulkanDevice->flushCommandBuffer(copyCmd, queue, true); // Free staging resources vkDestroyBuffer(device, vertexStaging.buffer, nullptr); vkFreeMemory(device, vertexStaging.memory, nullptr); vkDestroyBuffer(device, indexStaging.buffer, nullptr); vkFreeMemory(device, indexStaging.memory, nullptr); } void VulkanExample::loadAssets() { loadglTFFile(getAssetPath() + "buster_drone/busterDrone.gltf", glTFModel); loadglTFFile(getAssetPath() + "models/cube.gltf", skyboxModel, true); ibltextures.skyboxCube.loadFromFile(getAssetPath() + "textures/hdr/pisa_cube.ktx", VK_FORMAT_R16G16B16A16_SFLOAT, vulkanDevice, queue); } void VulkanExample::setupDescriptors() { /* This sample uses separate descriptor sets (and layouts) for the matrices and materials (textures) */ //Descriptor Pool Alloc { std::vector poolSizes = { vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 4), // One combined image sampler per model image/texture vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, static_cast(glTFModel.images.size())), vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 4), // Add aditional sampler descriptor vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1) }; // One set for matrices and one per model image/texture const uint32_t maxSetCount = static_cast(glTFModel.images.size()) + 6; VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, maxSetCount); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); } // Descriptor set layout for passing matrices ---and precompute texture add in this descriptor std::vector setLayoutBindings = { vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0), vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1), vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 2), vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 3), }; VkDescriptorSetLayoutCreateInfo descriptorSetLayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayouts.matrices)); VkDescriptorSetLayoutBinding materialBufferLayoutBinding = vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_FRAGMENT_BIT, 0); descriptorSetLayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(&materialBufferLayoutBinding, 1); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayouts.materialUniform)); // Descriptor set layout for passing material textures VkDescriptorSetLayoutBinding setLayoutBinding = vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 0); descriptorSetLayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(&setLayoutBinding, 1); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayouts.textures)); setLayoutBinding = vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayouts.ssbo)); //Pbr pipeline layout { // Pipeline layout using both descriptor sets (set 0 = matrices, set 1 = material) std::array setLayouts = { descriptorSetLayouts.matrices, descriptorSetLayouts.textures, descriptorSetLayouts.textures, descriptorSetLayouts.textures, descriptorSetLayouts.textures, descriptorSetLayouts.materialUniform, descriptorSetLayouts.ssbo }; VkPipelineLayoutCreateInfo pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(setLayouts.data(), static_cast(setLayouts.size())); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayouts.pbrLayout)); // Descriptor set for scene matrices VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.matrices, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet)); std::vector writeDescriptorSets = { vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &shaderData.buffer.descriptor), vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &ibltextures.irradianceCube.descriptor), vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2, &ibltextures.lutBrdf.descriptor), vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 3, &ibltextures.prefilteredCube.descriptor), }; vkUpdateDescriptorSets(device, 4, writeDescriptorSets.data(), 0, nullptr); for (auto& material : glTFModel.materials) { const VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.materialUniform, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &material.materialData.descriptorSet)); VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet( material.materialData.descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &material.materialData.buffer.descriptor); vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr); } // Descriptor sets for materials for (auto& image : glTFModel.images) { const VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.textures, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &image.descriptorSet)); VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(image.descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &image.texture.descriptor); vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr); } { const VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.ssbo, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &skinDescriptorSet)); VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(skinDescriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 0, &shaderData.skinSSBO.descriptor); vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr); } } //Tone Mapping pipeline layout { auto pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayouts.textures, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayouts.tonemappingLayout)); const VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.textures, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &tonemappingDescriptorSet)); auto imageInfo = vks::initializers::descriptorImageInfo(colorSampler, pbrFrameBuffer.color.imageView, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL); VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(tonemappingDescriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &imageInfo); vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr); } } void VulkanExample::preparePipelines() { VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationStateCI = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentStateCI = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendStateCI = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentStateCI); VkPipelineDepthStencilStateCreateInfo depthStencilStateCI = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportStateCI = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleStateCI = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0); const std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicStateCI = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables.data(), static_cast(dynamicStateEnables.size()), 0); // Vertex input bindings and attributes const std::vector vertexInputBindings = { vks::initializers::vertexInputBindingDescription(0, sizeof(VulkanglTFModel::Vertex), VK_VERTEX_INPUT_RATE_VERTEX), }; const std::vector vertexInputAttributes = { vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, pos)), // Location 0: Position vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, normal)),// Location 1: Normal vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, uv)), // Location 2: Texture coordinates vks::initializers::vertexInputAttributeDescription(0, 3, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, color)), // Location 3: Color vks::initializers::vertexInputAttributeDescription(0, 4, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, tangent)), // Location 4 : Tangent }; VkPipelineVertexInputStateCreateInfo vertexInputStateCI = vks::initializers::pipelineVertexInputStateCreateInfo(); vertexInputStateCI.vertexBindingDescriptionCount = static_cast(vertexInputBindings.size()); vertexInputStateCI.pVertexBindingDescriptions = vertexInputBindings.data(); vertexInputStateCI.vertexAttributeDescriptionCount = static_cast(vertexInputAttributes.size()); vertexInputStateCI.pVertexAttributeDescriptions = vertexInputAttributes.data(); std::array shaderStages = { loadShader(getHomeworkShadersPath() + "homework1/mesh.vert.spv", VK_SHADER_STAGE_VERTEX_BIT), loadShader(getHomeworkShadersPath() + "homework1/mesh.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT) }; VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayouts.pbrLayout, pbrFrameBuffer.fbo.renderPass, 0); pipelineCI.pVertexInputState = &vertexInputStateCI; pipelineCI.pInputAssemblyState = &inputAssemblyStateCI; pipelineCI.pRasterizationState = &rasterizationStateCI; pipelineCI.pColorBlendState = &colorBlendStateCI; pipelineCI.pMultisampleState = &multisampleStateCI; pipelineCI.pViewportState = &viewportStateCI; pipelineCI.pDepthStencilState = &depthStencilStateCI; pipelineCI.pDynamicState = &dynamicStateCI; pipelineCI.stageCount = static_cast(shaderStages.size()); pipelineCI.pStages = shaderStages.data(); // Solid rendering pipeline VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.solid)); // Wire frame rendering pipeline if (deviceFeatures.fillModeNonSolid) { rasterizationStateCI.polygonMode = VK_POLYGON_MODE_LINE; rasterizationStateCI.lineWidth = 1.0f; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.wireframe)); } //Create Tone Mapping render pipeline CreateToneMappingPipeline(); } void VulkanExample::CreateToneMappingPipeline() { if (pipelines.toneMapping != VK_NULL_HANDLE) { vkDestroyPipeline(device, pipelines.toneMapping, nullptr); pipelines.toneMapping = VK_NULL_HANDLE; } VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationStateCI = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentStateCI = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendStateCI = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentStateCI); VkPipelineDepthStencilStateCreateInfo depthStencilStateCI = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_FALSE, VK_FALSE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportStateCI = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleStateCI = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0); const std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicStateCI = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables.data(), static_cast(dynamicStateEnables.size()), 0); VkPipelineVertexInputStateCreateInfo emptyInputState = vks::initializers::pipelineVertexInputStateCreateInfo(); const std::string fragPath = ToneMapping ? "homework1/tonemapping_enable.frag.spv" : "homework1/tonemapping_disable.frag.spv"; std::array shaderStages = { loadShader(getHomeworkShadersPath() + "homework1/genbrdflut.vert.spv", VK_SHADER_STAGE_VERTEX_BIT), loadShader(getHomeworkShadersPath() + fragPath, VK_SHADER_STAGE_FRAGMENT_BIT) }; VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayouts.tonemappingLayout, renderPass, 0); pipelineCI.pVertexInputState = &emptyInputState; pipelineCI.pInputAssemblyState = &inputAssemblyStateCI; pipelineCI.pRasterizationState = &rasterizationStateCI; pipelineCI.pColorBlendState = &colorBlendStateCI; pipelineCI.pMultisampleState = &multisampleStateCI; pipelineCI.pViewportState = &viewportStateCI; pipelineCI.pDepthStencilState = &depthStencilStateCI; pipelineCI.pDynamicState = &dynamicStateCI; pipelineCI.stageCount = static_cast(shaderStages.size()); pipelineCI.pStages = shaderStages.data(); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.toneMapping)); } //----------------------------Prepare precompute Lighting or BRDF LUT-----------------------------------------------// //Irradiance map for diffuse lighting void VulkanExample::GenerateIrradianceCubemap() { auto tStart = std::chrono::high_resolution_clock::now(); constexpr VkFormat format = VK_FORMAT_R32G32B32A32_SFLOAT; constexpr int32_t dim = 64; const uint32_t numMips = static_cast(floor(log2(dim))) + 1; VkImageCreateInfo imageCI = vks::initializers::imageCreateInfo(); imageCI.imageType = VK_IMAGE_TYPE_2D; imageCI.format = format; imageCI.extent.width = dim; imageCI.extent.height = dim; imageCI.extent.depth = 1; imageCI.mipLevels = numMips; imageCI.arrayLayers = 6; imageCI.samples = VK_SAMPLE_COUNT_1_BIT; imageCI.tiling = VK_IMAGE_TILING_OPTIMAL; imageCI.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT; imageCI.flags = VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT; VK_CHECK_RESULT(vkCreateImage(device, &imageCI, nullptr, &ibltextures.irradianceCube.image)) VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo(); VkMemoryRequirements memReqs; vkGetImageMemoryRequirements(device, ibltextures.irradianceCube.image, &memReqs); memAlloc.allocationSize = memReqs.size; memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &ibltextures.irradianceCube.deviceMemory)) VK_CHECK_RESULT(vkBindImageMemory(device, ibltextures.irradianceCube.image, ibltextures.irradianceCube.deviceMemory, 0)) VkImageViewCreateInfo viewCI = vks::initializers::imageViewCreateInfo(); viewCI.viewType = VK_IMAGE_VIEW_TYPE_CUBE; viewCI.format = format; viewCI.subresourceRange = {}; viewCI.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; viewCI.subresourceRange.levelCount = numMips; viewCI.subresourceRange.layerCount = 6; viewCI.image = ibltextures.irradianceCube.image; VK_CHECK_RESULT(vkCreateImageView(device, &viewCI, nullptr, &ibltextures.irradianceCube.view)) VkSamplerCreateInfo samplerCI = vks::initializers::samplerCreateInfo(); samplerCI.magFilter = VK_FILTER_LINEAR; samplerCI.minFilter = VK_FILTER_LINEAR; samplerCI.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; samplerCI.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; samplerCI.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; samplerCI.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; samplerCI.minLod = 0.0f; samplerCI.maxLod = static_cast(numMips); samplerCI.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE; VK_CHECK_RESULT(vkCreateSampler(device, &samplerCI, nullptr, &ibltextures.irradianceCube.sampler)) ibltextures.irradianceCube.descriptor.imageView = ibltextures.irradianceCube.view; ibltextures.irradianceCube.descriptor.sampler = ibltextures.irradianceCube.sampler; ibltextures.irradianceCube.descriptor.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; ibltextures.irradianceCube.device = vulkanDevice; //Setup Framebuffer and so on VkAttachmentDescription attDesc = {}; attDesc.format = format; attDesc.samples = VK_SAMPLE_COUNT_1_BIT; attDesc.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; attDesc.storeOp = VK_ATTACHMENT_STORE_OP_STORE; attDesc.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attDesc.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attDesc.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; attDesc.finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; VkAttachmentReference colorReference = { 0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL }; VkSubpassDescription subpassDescription = {}; subpassDescription.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; subpassDescription.colorAttachmentCount = 1; subpassDescription.pColorAttachments = &colorReference; std::array dependencies; dependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL; dependencies[0].dstSubpass = 0; dependencies[0].srcStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT; dependencies[0].dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; dependencies[0].srcAccessMask = VK_ACCESS_MEMORY_READ_BIT; dependencies[0].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; dependencies[0].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT; dependencies[1].srcSubpass = 0; dependencies[1].dstSubpass = VK_SUBPASS_EXTERNAL; dependencies[1].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; dependencies[1].dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT; dependencies[1].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; dependencies[1].dstAccessMask = VK_ACCESS_MEMORY_READ_BIT; dependencies[1].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT; VkRenderPassCreateInfo renderPassCI = vks::initializers::renderPassCreateInfo(); renderPassCI.attachmentCount = 1; renderPassCI.pAttachments = &attDesc; renderPassCI.subpassCount = 1; renderPassCI.pSubpasses = &subpassDescription; renderPassCI.dependencyCount = 2; renderPassCI.pDependencies = dependencies.data(); VkRenderPass renderpass; VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassCI, nullptr, &renderpass)); { VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo(); imageCreateInfo.imageType = VK_IMAGE_TYPE_2D; imageCreateInfo.format = format; imageCreateInfo.extent.width = dim; imageCreateInfo.extent.height = dim; imageCreateInfo.extent.depth = 1; imageCreateInfo.mipLevels = 1; imageCreateInfo.arrayLayers = 1; imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL; imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; imageCreateInfo.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT; imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &offscreen.image)) VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo(); VkMemoryRequirements memReqs; vkGetImageMemoryRequirements(device, offscreen.image, &memReqs); memAlloc.allocationSize = memReqs.size; memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &offscreen.memory)) VK_CHECK_RESULT(vkBindImageMemory(device, offscreen.image, offscreen.memory, 0)) VkImageViewCreateInfo colorImageView = vks::initializers::imageViewCreateInfo(); colorImageView.viewType = VK_IMAGE_VIEW_TYPE_2D; colorImageView.format = format; colorImageView.flags = 0; colorImageView.subresourceRange = {}; colorImageView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; colorImageView.subresourceRange.baseMipLevel = 0; colorImageView.subresourceRange.levelCount = 1; colorImageView.subresourceRange.baseArrayLayer = 0; colorImageView.subresourceRange.layerCount = 1; colorImageView.image = offscreen.image; VK_CHECK_RESULT(vkCreateImageView(device, &colorImageView, nullptr, &offscreen.view)) VkFramebufferCreateInfo fbufCreateInfo = vks::initializers::framebufferCreateInfo(); fbufCreateInfo.renderPass = renderpass; fbufCreateInfo.attachmentCount = 1; fbufCreateInfo.pAttachments = &offscreen.view; fbufCreateInfo.width = dim; fbufCreateInfo.height = dim; fbufCreateInfo.layers = 1; VK_CHECK_RESULT(vkCreateFramebuffer(device, &fbufCreateInfo, nullptr, &offscreen.framebuffer)) VkCommandBuffer layoutCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); vks::tools::setImageLayout( layoutCmd, offscreen.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL); vulkanDevice->flushCommandBuffer(layoutCmd, queue, true); } VkDescriptorSetLayout descriptorsetlayout; std::vector setLayoutBindings = { vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 0), }; VkDescriptorSetLayoutCreateInfo descriptorsetlayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorsetlayoutCI, nullptr, &descriptorsetlayout)); std::vector poolSizes = { vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1) }; VkDescriptorPoolCreateInfo descriptorPoolCI = vks::initializers::descriptorPoolCreateInfo(poolSizes, 2); VkDescriptorPool descriptorpool; VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolCI, nullptr, &descriptorpool)); VkDescriptorSet descriptorset; VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorpool, &descriptorsetlayout, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorset)); VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(descriptorset, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &ibltextures.skyboxCube.descriptor); vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr); VkPipelineLayout pipelinelayout; std::vector pushConstantRanges = { vks::initializers::pushConstantRange(VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, sizeof(IrradiancePushBlock), 0) }; VkPipelineLayoutCreateInfo pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(&descriptorsetlayout, 1); pipelineLayoutCI.pushConstantRangeCount = 1; pipelineLayoutCI.pPushConstantRanges = pushConstantRanges.data(); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelinelayout)); //Pipeline Setting VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE); VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_FALSE, VK_FALSE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1); VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables); std::array shaderStages; const std::vector vertexInputBindings = { vks::initializers::vertexInputBindingDescription(0, sizeof(VulkanglTFModel::Vertex), VK_VERTEX_INPUT_RATE_VERTEX), }; const std::vector vertexInputAttributes = { vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, pos)), // Location 0: Position //vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, normal)),// Location 1: Normal //vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, uv)), // Location 2: Texture coordinates //vks::initializers::vertexInputAttributeDescription(0, 3, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, color)), // Location 3: Color //vks::initializers::vertexInputAttributeDescription(0, 4, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, tangent)), // Location 4 : Tangent }; VkPipelineVertexInputStateCreateInfo vertexInputStateCI = vks::initializers::pipelineVertexInputStateCreateInfo(); vertexInputStateCI.vertexBindingDescriptionCount = static_cast(vertexInputBindings.size()); vertexInputStateCI.pVertexBindingDescriptions = vertexInputBindings.data(); vertexInputStateCI.vertexAttributeDescriptionCount = static_cast(vertexInputAttributes.size()); vertexInputStateCI.pVertexAttributeDescriptions = vertexInputAttributes.data(); VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelinelayout, renderpass); pipelineCI.pInputAssemblyState = &inputAssemblyState; pipelineCI.pRasterizationState = &rasterizationState; pipelineCI.pColorBlendState = &colorBlendState; pipelineCI.pMultisampleState = &multisampleState; pipelineCI.pViewportState = &viewportState; pipelineCI.pDepthStencilState = &depthStencilState; pipelineCI.pDynamicState = &dynamicState; pipelineCI.stageCount = 2; pipelineCI.pStages = shaderStages.data(); pipelineCI.renderPass = renderpass; pipelineCI.pVertexInputState = &vertexInputStateCI; shaderStages[0] = loadShader(getHomeworkShadersPath() + "homework1/filtercube.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getHomeworkShadersPath() + "homework1/irradiancecube.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VkPipeline pipeline; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipeline)); //Render VkClearValue clearValues[1]; clearValues[0].color = { { 0.0f, 0.0f, 0.2f, 0.0f } }; VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderpass; renderPassBeginInfo.framebuffer = offscreen.framebuffer; renderPassBeginInfo.renderArea.extent.width = dim; renderPassBeginInfo.renderArea.extent.height = dim; renderPassBeginInfo.clearValueCount = 1; renderPassBeginInfo.pClearValues = clearValues; //six face in cube map std::vector matrices = { // POSITIVE_X glm::rotate(glm::rotate(glm::mat4(1.0f), glm::radians(90.0f), glm::vec3(0.0f, 1.0f, 0.0f)), glm::radians(180.0f), glm::vec3(1.0f, 0.0f, 0.0f)), // NEGATIVE_X glm::rotate(glm::rotate(glm::mat4(1.0f), glm::radians(-90.0f), glm::vec3(0.0f, 1.0f, 0.0f)), glm::radians(180.0f), glm::vec3(1.0f, 0.0f, 0.0f)), // POSITIVE_Y glm::rotate(glm::mat4(1.0f), glm::radians(-90.0f), glm::vec3(1.0f, 0.0f, 0.0f)), // NEGATIVE_Y glm::rotate(glm::mat4(1.0f), glm::radians(90.0f), glm::vec3(1.0f, 0.0f, 0.0f)), // POSITIVE_Z glm::rotate(glm::mat4(1.0f), glm::radians(180.0f), glm::vec3(1.0f, 0.0f, 0.0f)), // NEGATIVE_Z glm::rotate(glm::mat4(1.0f), glm::radians(180.0f), glm::vec3(0.0f, 0.0f, 1.0f)), }; VkCommandBuffer cmdBuf = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); VkViewport viewport = vks::initializers::viewport((float)dim, (float)dim, 0.0f, 1.0f); VkRect2D scissor = vks::initializers::rect2D(dim, dim, 0, 0); vkCmdSetViewport(cmdBuf, 0, 1, &viewport); vkCmdSetScissor(cmdBuf, 0, 1, &scissor); VkImageSubresourceRange subresourceRange = {}; subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; subresourceRange.baseMipLevel = 0; subresourceRange.levelCount = numMips; subresourceRange.layerCount = 6; vks::tools::setImageLayout( cmdBuf, ibltextures.irradianceCube.image, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, subresourceRange); for(uint32_t m = 0; m < numMips; ++m) { for(uint32_t f = 0; f < 6; ++f) { viewport.width = static_cast(dim * std::pow(0.5f, m)); viewport.height = static_cast(dim * std::pow(0.5f, m)); vkCmdSetViewport(cmdBuf, 0, 1, &viewport); // Render scene from cube face's point of view vkCmdBeginRenderPass(cmdBuf, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); irradiancePushBlock.mvp = glm::perspective((float)(M_PI / 2.0), 1.0f, 0.1f, 512.0f) * matrices[f]; vkCmdPushConstants(cmdBuf, pipelinelayout, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0, sizeof(IrradiancePushBlock), &irradiancePushBlock); vkCmdBindPipeline(cmdBuf, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline); vkCmdBindDescriptorSets(cmdBuf, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelinelayout, 0, 1, &descriptorset, 0, NULL); skyboxModel.draw(cmdBuf, pipelinelayout, false); vkCmdEndRenderPass(cmdBuf); vks::tools::setImageLayout( cmdBuf, offscreen.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL); VkImageCopy copyRegion = {}; copyRegion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; copyRegion.srcSubresource.layerCount = 1; copyRegion.srcSubresource.mipLevel = 0; copyRegion.srcSubresource.baseArrayLayer = 0; copyRegion.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; copyRegion.dstSubresource.layerCount = 1; copyRegion.dstSubresource.mipLevel = m; copyRegion.dstSubresource.baseArrayLayer = f; copyRegion.extent.width = static_cast(viewport.width); copyRegion.extent.height = static_cast(viewport.height); copyRegion.extent.depth = 1; vkCmdCopyImage( cmdBuf, offscreen.image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, ibltextures.irradianceCube.image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ©Region); vks::tools::setImageLayout(cmdBuf, offscreen.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL ); } } vks::tools::setImageLayout(cmdBuf, ibltextures.irradianceCube.image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, subresourceRange); vulkanDevice->flushCommandBuffer(cmdBuf, queue); vkDestroyRenderPass(device, renderpass, nullptr); vkDestroyFramebuffer(device, offscreen.framebuffer, nullptr); vkFreeMemory(device, offscreen.memory, nullptr); vkDestroyImageView(device, offscreen.view, nullptr); vkDestroyImage(device, offscreen.image, nullptr); vkDestroyDescriptorPool(device, descriptorpool, nullptr); vkDestroyDescriptorSetLayout(device, descriptorsetlayout, nullptr); vkDestroyPipeline(device, pipeline, nullptr); vkDestroyPipelineLayout(device, pipelinelayout, nullptr); auto tEnd = std::chrono::high_resolution_clock::now(); auto tDiff = std::chrono::duration(tEnd - tStart).count(); std::cout << "Generating irradiance cube with " << numMips << " mip levels took " << tDiff << " ms" << std::endl; } void VulkanExample::GeneratePrefilteredCubemap() { auto tStart = std::chrono::high_resolution_clock::now(); constexpr VkFormat format = VK_FORMAT_R32G32B32A32_SFLOAT; constexpr int32_t dim = 512; const uint32_t numMips = static_cast(floor(log2(dim))) + 1; VkImageCreateInfo imageCI = vks::initializers::imageCreateInfo(); imageCI.imageType = VK_IMAGE_TYPE_2D; imageCI.format = format; imageCI.extent.width = dim; imageCI.extent.height = dim; imageCI.extent.depth = 1; imageCI.mipLevels = numMips; imageCI.arrayLayers = 6; imageCI.samples = VK_SAMPLE_COUNT_1_BIT; imageCI.tiling = VK_IMAGE_TILING_OPTIMAL; imageCI.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT; imageCI.flags = VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT; VK_CHECK_RESULT(vkCreateImage(device, &imageCI, nullptr, &ibltextures.prefilteredCube.image)); VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo(); VkMemoryRequirements memReqs; vkGetImageMemoryRequirements(device, ibltextures.prefilteredCube.image, &memReqs); memAlloc.allocationSize = memReqs.size; memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &ibltextures.prefilteredCube.deviceMemory)); VK_CHECK_RESULT(vkBindImageMemory(device, ibltextures.prefilteredCube.image, ibltextures.prefilteredCube.deviceMemory, 0)); // Image view VkImageViewCreateInfo viewCI = vks::initializers::imageViewCreateInfo(); viewCI.viewType = VK_IMAGE_VIEW_TYPE_CUBE; viewCI.format = format; viewCI.subresourceRange = {}; viewCI.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; viewCI.subresourceRange.levelCount = numMips; viewCI.subresourceRange.layerCount = 6; viewCI.image = ibltextures.prefilteredCube.image; VK_CHECK_RESULT(vkCreateImageView(device, &viewCI, nullptr, &ibltextures.prefilteredCube.view)); // Sampler VkSamplerCreateInfo samplerCI = vks::initializers::samplerCreateInfo(); samplerCI.magFilter = VK_FILTER_LINEAR; samplerCI.minFilter = VK_FILTER_LINEAR; samplerCI.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; samplerCI.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; samplerCI.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; samplerCI.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; samplerCI.minLod = 0.0f; samplerCI.maxLod = static_cast(numMips); samplerCI.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE; VK_CHECK_RESULT(vkCreateSampler(device, &samplerCI, nullptr, &ibltextures.prefilteredCube.sampler)); ibltextures.prefilteredCube.descriptor.imageView = ibltextures.prefilteredCube.view; ibltextures.prefilteredCube.descriptor.sampler = ibltextures.prefilteredCube.sampler; ibltextures.prefilteredCube.descriptor.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; ibltextures.prefilteredCube.device = vulkanDevice; // FB, Att, RP, Pipe, etc. VkAttachmentDescription attDesc = {}; // Color attachment attDesc.format = format; attDesc.samples = VK_SAMPLE_COUNT_1_BIT; attDesc.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; attDesc.storeOp = VK_ATTACHMENT_STORE_OP_STORE; attDesc.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attDesc.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attDesc.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; attDesc.finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; VkAttachmentReference colorReference = { 0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL }; VkSubpassDescription subpassDescription = {}; subpassDescription.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; subpassDescription.colorAttachmentCount = 1; subpassDescription.pColorAttachments = &colorReference; // Use subpass dependencies for layout transitions std::array dependencies; dependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL; dependencies[0].dstSubpass = 0; dependencies[0].srcStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT; dependencies[0].dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; dependencies[0].srcAccessMask = VK_ACCESS_MEMORY_READ_BIT; dependencies[0].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; dependencies[0].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT; dependencies[1].srcSubpass = 0; dependencies[1].dstSubpass = VK_SUBPASS_EXTERNAL; dependencies[1].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; dependencies[1].dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT; dependencies[1].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; dependencies[1].dstAccessMask = VK_ACCESS_MEMORY_READ_BIT; dependencies[1].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT; // Renderpass VkRenderPassCreateInfo renderPassCI = vks::initializers::renderPassCreateInfo(); renderPassCI.attachmentCount = 1; renderPassCI.pAttachments = &attDesc; renderPassCI.subpassCount = 1; renderPassCI.pSubpasses = &subpassDescription; renderPassCI.dependencyCount = 2; renderPassCI.pDependencies = dependencies.data(); VkRenderPass renderpass; VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassCI, nullptr, &renderpass)); struct { VkImage image; VkImageView view; VkDeviceMemory memory; VkFramebuffer framebuffer; } offscreen; //framebuffer { // Color attachment VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo(); imageCreateInfo.imageType = VK_IMAGE_TYPE_2D; imageCreateInfo.format = format; imageCreateInfo.extent.width = dim; imageCreateInfo.extent.height = dim; imageCreateInfo.extent.depth = 1; imageCreateInfo.mipLevels = 1; imageCreateInfo.arrayLayers = 1; imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL; imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; imageCreateInfo.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT; imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &offscreen.image)); VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo(); VkMemoryRequirements memReqs; vkGetImageMemoryRequirements(device, offscreen.image, &memReqs); memAlloc.allocationSize = memReqs.size; memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &offscreen.memory)); VK_CHECK_RESULT(vkBindImageMemory(device, offscreen.image, offscreen.memory, 0)); VkImageViewCreateInfo colorImageView = vks::initializers::imageViewCreateInfo(); colorImageView.viewType = VK_IMAGE_VIEW_TYPE_2D; colorImageView.format = format; colorImageView.flags = 0; colorImageView.subresourceRange = {}; colorImageView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; colorImageView.subresourceRange.baseMipLevel = 0; colorImageView.subresourceRange.levelCount = 1; colorImageView.subresourceRange.baseArrayLayer = 0; colorImageView.subresourceRange.layerCount = 1; colorImageView.image = offscreen.image; VK_CHECK_RESULT(vkCreateImageView(device, &colorImageView, nullptr, &offscreen.view)); VkFramebufferCreateInfo fbufCreateInfo = vks::initializers::framebufferCreateInfo(); fbufCreateInfo.renderPass = renderpass; fbufCreateInfo.attachmentCount = 1; fbufCreateInfo.pAttachments = &offscreen.view; fbufCreateInfo.width = dim; fbufCreateInfo.height = dim; fbufCreateInfo.layers = 1; VK_CHECK_RESULT(vkCreateFramebuffer(device, &fbufCreateInfo, nullptr, &offscreen.framebuffer)); VkCommandBuffer layoutCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); vks::tools::setImageLayout( layoutCmd, offscreen.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL); vulkanDevice->flushCommandBuffer(layoutCmd, queue, true); } // Descriptors VkDescriptorSetLayout descriptorsetlayout; std::vector setLayoutBindings = { vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 0), }; VkDescriptorSetLayoutCreateInfo descriptorsetlayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorsetlayoutCI, nullptr, &descriptorsetlayout)); // Descriptor Pool std::vector poolSizes = { vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1) }; VkDescriptorPoolCreateInfo descriptorPoolCI = vks::initializers::descriptorPoolCreateInfo(poolSizes, 2); VkDescriptorPool descriptorpool; VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolCI, nullptr, &descriptorpool)); VkDescriptorSet descriptorset; VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorpool, &descriptorsetlayout, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorset)); VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(descriptorset, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &ibltextures.skyboxCube.descriptor); vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr); struct PushBlock { glm::mat4 mvp; float roughness; uint32_t numSamples = 32u; } pushBlock; std::vector pushConstantRanges = { vks::initializers::pushConstantRange(VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, sizeof(PushBlock), 0), }; VkPipelineLayoutCreateInfo pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(&descriptorsetlayout, 1); pipelineLayoutCI.pushConstantRangeCount = 1; pipelineLayoutCI.pPushConstantRanges = pushConstantRanges.data(); VkPipelineLayout pipelinelayout; VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelinelayout)); VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE); VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_FALSE, VK_FALSE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1); VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables); std::array shaderStages; const std::vector vertexInputBindings = { vks::initializers::vertexInputBindingDescription(0, sizeof(VulkanglTFModel::Vertex), VK_VERTEX_INPUT_RATE_VERTEX), }; const std::vector vertexInputAttributes = { vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, pos)), // Location 0: Position }; VkPipelineVertexInputStateCreateInfo vertexInputStateCI = vks::initializers::pipelineVertexInputStateCreateInfo(); vertexInputStateCI.vertexBindingDescriptionCount = static_cast(vertexInputBindings.size()); vertexInputStateCI.pVertexBindingDescriptions = vertexInputBindings.data(); vertexInputStateCI.vertexAttributeDescriptionCount = static_cast(vertexInputAttributes.size()); vertexInputStateCI.pVertexAttributeDescriptions = vertexInputAttributes.data(); VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelinelayout, renderpass); pipelineCI.pInputAssemblyState = &inputAssemblyState; pipelineCI.pRasterizationState = &rasterizationState; pipelineCI.pColorBlendState = &colorBlendState; pipelineCI.pMultisampleState = &multisampleState; pipelineCI.pViewportState = &viewportState; pipelineCI.pDepthStencilState = &depthStencilState; pipelineCI.pDynamicState = &dynamicState; pipelineCI.stageCount = 2; pipelineCI.pStages = shaderStages.data(); pipelineCI.renderPass = renderpass; pipelineCI.pVertexInputState = &vertexInputStateCI; shaderStages[0] = loadShader(getHomeworkShadersPath() + "homework1/filtercube.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getHomeworkShadersPath() + "homework1/prefilterenvmap.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VkPipeline pipeline; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipeline)); //Render & build cmd VkClearValue clearValues[1]; clearValues[0].color = { { 0.0f, 0.0f, 0.2f, 0.0f } }; VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); // Reuse render pass from example pass renderPassBeginInfo.renderPass = renderpass; renderPassBeginInfo.framebuffer = offscreen.framebuffer; renderPassBeginInfo.renderArea.extent.width = dim; renderPassBeginInfo.renderArea.extent.height = dim; renderPassBeginInfo.clearValueCount = 1; renderPassBeginInfo.pClearValues = clearValues; std::vector matrices = { // POSITIVE_X glm::rotate(glm::rotate(glm::mat4(1.0f), glm::radians(90.0f), glm::vec3(0.0f, 1.0f, 0.0f)), glm::radians(180.0f), glm::vec3(1.0f, 0.0f, 0.0f)), // NEGATIVE_X glm::rotate(glm::rotate(glm::mat4(1.0f), glm::radians(-90.0f), glm::vec3(0.0f, 1.0f, 0.0f)), glm::radians(180.0f), glm::vec3(1.0f, 0.0f, 0.0f)), // POSITIVE_Y glm::rotate(glm::mat4(1.0f), glm::radians(-90.0f), glm::vec3(1.0f, 0.0f, 0.0f)), // NEGATIVE_Y glm::rotate(glm::mat4(1.0f), glm::radians(90.0f), glm::vec3(1.0f, 0.0f, 0.0f)), // POSITIVE_Z glm::rotate(glm::mat4(1.0f), glm::radians(180.0f), glm::vec3(1.0f, 0.0f, 0.0f)), // NEGATIVE_Z glm::rotate(glm::mat4(1.0f), glm::radians(180.0f), glm::vec3(0.0f, 0.0f, 1.0f)), }; VkCommandBuffer cmdBuf = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); VkViewport viewport = vks::initializers::viewport((float)dim, (float)dim, 0.0f, 1.0f); VkRect2D scissor = vks::initializers::rect2D(dim, dim, 0, 0); vkCmdSetViewport(cmdBuf, 0, 1, &viewport); vkCmdSetScissor(cmdBuf, 0, 1, &scissor); VkImageSubresourceRange subresourceRange = {}; subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; subresourceRange.baseMipLevel = 0; subresourceRange.levelCount = numMips; subresourceRange.layerCount = 6; vks::tools::setImageLayout( cmdBuf, ibltextures.prefilteredCube.image, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, subresourceRange); for (uint32_t m = 0; m < numMips; ++m) { //mip level according to roughness pushBlock.roughness = float(m) / float(numMips - 1); for (uint32_t f = 0; f < 6; ++f) { viewport.width = static_cast(dim * std::pow(0.5f, m)); viewport.height = static_cast(dim * std::pow(0.5f, m)); vkCmdSetViewport(cmdBuf, 0, 1, &viewport); // Render scene from cube face's point of view vkCmdBeginRenderPass(cmdBuf, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); // Update shader push constant block pushBlock.mvp = glm::perspective((float)(M_PI / 2.0), 1.0f, 0.1f, 512.0f) * matrices[f]; vkCmdPushConstants(cmdBuf, pipelinelayout, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0, sizeof(PushBlock), &pushBlock); vkCmdBindPipeline(cmdBuf, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline); vkCmdBindDescriptorSets(cmdBuf, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelinelayout, 0, 1, &descriptorset, 0, nullptr); skyboxModel.draw(cmdBuf, pipelinelayout, false); vkCmdEndRenderPass(cmdBuf); vks::tools::setImageLayout( cmdBuf, offscreen.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL); VkImageCopy copyRegion{}; copyRegion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; copyRegion.srcSubresource.baseArrayLayer = 0; copyRegion.srcSubresource.mipLevel = 0; copyRegion.srcSubresource.layerCount = 1; copyRegion.srcOffset = { 0, 0, 0 }; copyRegion.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; copyRegion.dstSubresource.baseArrayLayer = f; copyRegion.dstSubresource.mipLevel = m; copyRegion.dstSubresource.layerCount = 1; copyRegion.dstOffset = { 0, 0, 0 }; copyRegion.extent.width = static_cast(viewport.width); copyRegion.extent.height = static_cast(viewport.height); copyRegion.extent.depth = 1; vkCmdCopyImage( cmdBuf, offscreen.image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, ibltextures.prefilteredCube.image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ©Region); //Reset frame buffer image layout vks::tools::setImageLayout( cmdBuf, offscreen.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL); } } //Set format shader read vks::tools::setImageLayout( cmdBuf, ibltextures.prefilteredCube.image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, subresourceRange); vulkanDevice->flushCommandBuffer(cmdBuf, queue); vkDestroyRenderPass(device, renderpass, nullptr); vkDestroyFramebuffer(device, offscreen.framebuffer, nullptr); vkFreeMemory(device, offscreen.memory, nullptr); vkDestroyImageView(device, offscreen.view, nullptr); vkDestroyImage(device, offscreen.image, nullptr); vkDestroyDescriptorPool(device, descriptorpool, nullptr); vkDestroyDescriptorSetLayout(device, descriptorsetlayout, nullptr); vkDestroyPipeline(device, pipeline, nullptr); vkDestroyPipelineLayout(device, pipelinelayout, nullptr); auto tEnd = std::chrono::high_resolution_clock::now(); auto tDiff = std::chrono::duration(tEnd - tStart).count(); std::cout << "Generating pre-filtered enivornment cube with " << numMips << " mip levels took " << tDiff << " ms" << std::endl; } void VulkanExample::GenerateBRDFLUT() { auto tStart = std::chrono::high_resolution_clock::now(); constexpr VkFormat format = VK_FORMAT_R16G16_SFLOAT; constexpr int32_t dim = 512; // Image VkImageCreateInfo imageCI = vks::initializers::imageCreateInfo(); imageCI.imageType = VK_IMAGE_TYPE_2D; imageCI.format = format; imageCI.extent.width = dim; imageCI.extent.height = dim; imageCI.extent.depth = 1; imageCI.mipLevels = 1; imageCI.arrayLayers = 1; imageCI.samples = VK_SAMPLE_COUNT_1_BIT; imageCI.tiling = VK_IMAGE_TILING_OPTIMAL; imageCI.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_SAMPLED_BIT; VK_CHECK_RESULT(vkCreateImage(device, &imageCI, nullptr, &ibltextures.lutBrdf.image)); VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo(); VkMemoryRequirements memReqs; vkGetImageMemoryRequirements(device, ibltextures.lutBrdf.image, &memReqs); memAlloc.allocationSize = memReqs.size; memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &ibltextures.lutBrdf.deviceMemory)); VK_CHECK_RESULT(vkBindImageMemory(device, ibltextures.lutBrdf.image, ibltextures.lutBrdf.deviceMemory, 0)); // Image view VkImageViewCreateInfo viewCI = vks::initializers::imageViewCreateInfo(); viewCI.viewType = VK_IMAGE_VIEW_TYPE_2D; viewCI.format = format; viewCI.subresourceRange = {}; viewCI.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; viewCI.subresourceRange.levelCount = 1; viewCI.subresourceRange.layerCount = 1; viewCI.image = ibltextures.lutBrdf.image; VK_CHECK_RESULT(vkCreateImageView(device, &viewCI, nullptr, &ibltextures.lutBrdf.view)); // Sampler VkSamplerCreateInfo samplerCI = vks::initializers::samplerCreateInfo(); samplerCI.magFilter = VK_FILTER_LINEAR; samplerCI.minFilter = VK_FILTER_LINEAR; samplerCI.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; samplerCI.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; samplerCI.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; samplerCI.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; samplerCI.minLod = 0.0f; samplerCI.maxLod = 1.0f; samplerCI.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE; VK_CHECK_RESULT(vkCreateSampler(device, &samplerCI, nullptr, &ibltextures.lutBrdf.sampler)); ibltextures.lutBrdf.descriptor.imageView = ibltextures.lutBrdf.view; ibltextures.lutBrdf.descriptor.sampler = ibltextures.lutBrdf.sampler; ibltextures.lutBrdf.descriptor.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; ibltextures.lutBrdf.device = vulkanDevice; // FB, Att, RP, Pipe, etc. VkAttachmentDescription attDesc = {}; // Color attachment attDesc.format = format; attDesc.samples = VK_SAMPLE_COUNT_1_BIT; attDesc.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; attDesc.storeOp = VK_ATTACHMENT_STORE_OP_STORE; attDesc.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attDesc.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attDesc.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; attDesc.finalLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; VkAttachmentReference colorReference = { 0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL }; VkSubpassDescription subpassDescription = {}; subpassDescription.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; subpassDescription.colorAttachmentCount = 1; subpassDescription.pColorAttachments = &colorReference; // Use subpass dependencies for layout transitions std::array dependencies; dependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL; dependencies[0].dstSubpass = 0; dependencies[0].srcStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT; dependencies[0].dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; dependencies[0].srcAccessMask = VK_ACCESS_MEMORY_READ_BIT; dependencies[0].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; dependencies[0].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT; dependencies[1].srcSubpass = 0; dependencies[1].dstSubpass = VK_SUBPASS_EXTERNAL; dependencies[1].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; dependencies[1].dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT; dependencies[1].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; dependencies[1].dstAccessMask = VK_ACCESS_MEMORY_READ_BIT; dependencies[1].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT; // Create the actual renderpass VkRenderPassCreateInfo renderPassCI = vks::initializers::renderPassCreateInfo(); renderPassCI.attachmentCount = 1; renderPassCI.pAttachments = &attDesc; renderPassCI.subpassCount = 1; renderPassCI.pSubpasses = &subpassDescription; renderPassCI.dependencyCount = 2; renderPassCI.pDependencies = dependencies.data(); VkRenderPass renderpass; VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassCI, nullptr, &renderpass)); VkFramebufferCreateInfo framebufferCI = vks::initializers::framebufferCreateInfo(); framebufferCI.renderPass = renderpass; framebufferCI.attachmentCount = 1; framebufferCI.pAttachments = &ibltextures.lutBrdf.view; framebufferCI.width = dim; framebufferCI.height = dim; framebufferCI.layers = 1; VkFramebuffer framebuffer; VK_CHECK_RESULT(vkCreateFramebuffer(device, &framebufferCI, nullptr, &framebuffer)); // Descriptors VkDescriptorSetLayout descriptorsetlayout; std::vector setLayoutBindings = {}; VkDescriptorSetLayoutCreateInfo descriptorsetlayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorsetlayoutCI, nullptr, &descriptorsetlayout)); // Descriptor Pool std::vector poolSizes = { vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1) }; VkDescriptorPoolCreateInfo descriptorPoolCI = vks::initializers::descriptorPoolCreateInfo(poolSizes, 2); VkDescriptorPool descriptorpool; VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolCI, nullptr, &descriptorpool)); // Descriptor sets VkDescriptorSet descriptorset; VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorpool, &descriptorsetlayout, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorset)); // Pipeline layout VkPipelineLayout pipelinelayout; VkPipelineLayoutCreateInfo pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(&descriptorsetlayout, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelinelayout)); // Pipeline VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE); VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_FALSE, VK_FALSE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1); VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables); VkPipelineVertexInputStateCreateInfo emptyInputState = vks::initializers::pipelineVertexInputStateCreateInfo(); std::array shaderStages; VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelinelayout, renderpass); pipelineCI.pInputAssemblyState = &inputAssemblyState; pipelineCI.pRasterizationState = &rasterizationState; pipelineCI.pColorBlendState = &colorBlendState; pipelineCI.pMultisampleState = &multisampleState; pipelineCI.pViewportState = &viewportState; pipelineCI.pDepthStencilState = &depthStencilState; pipelineCI.pDynamicState = &dynamicState; pipelineCI.stageCount = 2; pipelineCI.pStages = shaderStages.data(); pipelineCI.pVertexInputState = &emptyInputState; // Look-up-table (from BRDF) pipeline shaderStages[0] = loadShader(getHomeworkShadersPath() + "homework1/genbrdflut.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getHomeworkShadersPath() + "homework1/genbrdflut.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VkPipeline pipeline; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipeline)); // Render VkClearValue clearValues[1]; clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 1.0f } }; VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderpass; renderPassBeginInfo.renderArea.extent.width = dim; renderPassBeginInfo.renderArea.extent.height = dim; renderPassBeginInfo.clearValueCount = 1; renderPassBeginInfo.pClearValues = clearValues; renderPassBeginInfo.framebuffer = framebuffer; VkCommandBuffer cmdBuf = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); vkCmdBeginRenderPass(cmdBuf, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vks::initializers::viewport((float)dim, (float)dim, 0.0f, 1.0f); VkRect2D scissor = vks::initializers::rect2D(dim, dim, 0, 0); vkCmdSetViewport(cmdBuf, 0, 1, &viewport); vkCmdSetScissor(cmdBuf, 0, 1, &scissor); vkCmdBindPipeline(cmdBuf, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline); vkCmdDraw(cmdBuf, 3, 1, 0, 0); vkCmdEndRenderPass(cmdBuf); vulkanDevice->flushCommandBuffer(cmdBuf, queue); vkQueueWaitIdle(queue); vkDestroyPipeline(device, pipeline, nullptr); vkDestroyPipelineLayout(device, pipelinelayout, nullptr); vkDestroyRenderPass(device, renderpass, nullptr); vkDestroyFramebuffer(device, framebuffer, nullptr); vkDestroyDescriptorSetLayout(device, descriptorsetlayout, nullptr); vkDestroyDescriptorPool(device, descriptorpool, nullptr); auto tEnd = std::chrono::high_resolution_clock::now(); auto tDiff = std::chrono::duration(tEnd - tStart).count(); std::cout << "Generating BRDF LUT took " << tDiff << " ms" << std::endl; } //----------------------------End Precompute brick------------------------------------------------------------------// #pragma region pbr render pass setting void VulkanExample::createAttachment( VkFormat format, VkImageUsageFlagBits usage, FrameBufferAttachment* attachment, uint32_t width, uint32_t height) { VkImageAspectFlags aspectMask = 0; VkImageUsageFlags imageUsage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT; attachment->format = format; if (usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) { aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; imageUsage |= VK_IMAGE_USAGE_SAMPLED_BIT; } if (usage & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) { aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT; if (format >= VK_FORMAT_D16_UNORM_S8_UINT) aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT; } assert(aspectMask > 0); VkImageCreateInfo image = vks::initializers::imageCreateInfo(); image.imageType = VK_IMAGE_TYPE_2D; image.format = format; image.extent.width = width; image.extent.height = height; image.extent.depth = 1; image.mipLevels = 1; image.arrayLayers = 1; image.samples = VK_SAMPLE_COUNT_1_BIT; image.tiling = VK_IMAGE_TILING_OPTIMAL; image.usage = imageUsage | usage; VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo(); VkMemoryRequirements memReqs; VK_CHECK_RESULT(vkCreateImage(device, &image, nullptr, &attachment->image)); vkGetImageMemoryRequirements(device, attachment->image, &memReqs); memAlloc.allocationSize = memReqs.size; memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &attachment->deviceMemory)); VK_CHECK_RESULT(vkBindImageMemory(device, attachment->image, attachment->deviceMemory, 0)); VkImageViewCreateInfo imageView = vks::initializers::imageViewCreateInfo(); imageView.viewType = VK_IMAGE_VIEW_TYPE_2D; imageView.format = format; imageView.subresourceRange = {}; imageView.subresourceRange.aspectMask = aspectMask; imageView.subresourceRange.baseMipLevel = 0; imageView.subresourceRange.levelCount = 1; imageView.subresourceRange.baseArrayLayer = 0; imageView.subresourceRange.layerCount = 1; imageView.image = attachment->image; VK_CHECK_RESULT(vkCreateImageView(device, &imageView, nullptr, &attachment->imageView)); } #pragma endregion // Prepare and initialize uniform buffer containing shader uniforms void VulkanExample::prepareUniformBuffers() { // Vertex shader uniform buffer block VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &shaderData.buffer, sizeof(shaderData.values))); VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_STORAGE_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &shaderData.skinSSBO, sizeof(glm::mat4) * glTFModel.nodeCount)); // Map persistent VK_CHECK_RESULT(shaderData.buffer.map()); VK_CHECK_RESULT(shaderData.skinSSBO.map()); for (auto& material : glTFModel.materials) { VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &material.materialData.buffer, sizeof(VulkanglTFModel::MaterialData::Values), &material.materialData.values)); } updateUniformBuffers(); } void VulkanExample::updateUniformBuffers() { shaderData.values.projection = camera.matrices.perspective; shaderData.values.model = camera.matrices.view; shaderData.values.viewPos = camera.viewPos; shaderData.values.bFlagSet.x = normalMapping; shaderData.values.bFlagSet.y = pbrEnabled; memcpy(shaderData.buffer.mapped, &shaderData.values, sizeof(shaderData.values)); } void VulkanExample::prepare() { VulkanExampleBase::prepare(); loadAssets(); GenerateBRDFLUT(); GenerateIrradianceCubemap(); GeneratePrefilteredCubemap(); prepareUniformBuffers(); setupDescriptors(); preparePipelines(); buildCommandBuffers(); prepared = true; } void VulkanExample::render() { renderFrame(); if (camera.updated) { updateUniformBuffers(); } if(!paused) glTFModel.updateAnimation(frameTimer, shaderData.skinSSBO); } void VulkanExample::viewChanged() { updateUniformBuffers(); } void VulkanExample::OnUpdateUIOverlay(vks::UIOverlay *overlay) { if (overlay->header("Settings")) { if (overlay->checkBox("Wireframe", &wireframe)) { buildCommandBuffers(); } if (overlay->checkBox("NormalMapping", &normalMapping)) { } if (overlay->checkBox("ToneMapping", &ToneMapping)) { CreateToneMappingPipeline(); } if (overlay->checkBox("PbrIndirect", &pbrEnabled)) { } } if (overlay->header("Animation")) { overlay->checkBox("Pause", &paused); } } VULKAN_EXAMPLE_MAIN()