/* * Vulkan Example - glTF scene loading and rendering * * Copyright (C) 2020-2022 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ /* * Shows how to load and display a simple scene from a glTF file * Note that this isn't a complete glTF loader and only basic functions are shown here * This means no complex materials, no animations, no skins, etc. * For details on how glTF 2.0 works, see the official spec at https://github.com/KhronosGroup/glTF/tree/master/specification/2.0 * * Other samples will load models using a dedicated model loader with more features (see base/VulkanglTFModel.hpp) * * If you are looking for a complete glTF implementation, check out https://github.com/SaschaWillems/Vulkan-glTF-PBR/ */ #define TINYGLTF_IMPLEMENTATION #define STB_IMAGE_IMPLEMENTATION #define TINYGLTF_NO_STB_IMAGE_WRITE #ifdef VK_USE_PLATFORM_ANDROID_KHR #define TINYGLTF_ANDROID_LOAD_FROM_ASSETS #endif #include "tiny_gltf.h" #include "vulkanexamplebase.h" #define ENABLE_VALIDATION false // Contains everything required to render a glTF model in Vulkan // This class is heavily simplified (compared to glTF's feature set) but retains the basic glTF structure class VulkanglTFModel { public: // The class requires some Vulkan objects so it can create it's own resources vks::VulkanDevice* vulkanDevice; VkQueue copyQueue; // The vertex layout for the samples' model struct Vertex { glm::vec3 pos; glm::vec3 normal; glm::vec2 uv; glm::vec3 color; }; // Single vertex buffer for all primitives struct { VkBuffer buffer; VkDeviceMemory memory; } vertices; // Single index buffer for all primitives struct { int count; VkBuffer buffer; VkDeviceMemory memory; } indices; // The following structures roughly represent the glTF scene structure // To keep things simple, they only contain those properties that are required for this sample struct Node; // A primitive contains the data for a single draw call struct Primitive { uint32_t firstIndex; uint32_t indexCount; int32_t materialIndex; }; // Contains the node's (optional) geometry and can be made up of an arbitrary number of primitives struct Mesh { std::vector primitives; }; // A node represents an object in the glTF scene graph struct Node { Node* parent; std::vector children; Mesh mesh; glm::mat4 matrix; ~Node() { for (auto& child : children) { delete child; } } }; // A glTF material stores information in e.g. the texture that is attached to it and colors struct Material { glm::vec4 baseColorFactor = glm::vec4(1.0f); uint32_t baseColorTextureIndex; }; // Contains the texture for a single glTF image // Images may be reused by texture objects and are as such separated struct Image { vks::Texture2D texture; // We also store (and create) a descriptor set that's used to access this texture from the fragment shader VkDescriptorSet descriptorSet; }; // A glTF texture stores a reference to the image and a sampler // In this sample, we are only interested in the image struct Texture { int32_t imageIndex; }; /* Model data */ std::vector images; std::vector textures; std::vector materials; std::vector nodes; ~VulkanglTFModel() { for (auto node : nodes) { delete node; } // Release all Vulkan resources allocated for the model vkDestroyBuffer(vulkanDevice->logicalDevice, vertices.buffer, nullptr); vkFreeMemory(vulkanDevice->logicalDevice, vertices.memory, nullptr); vkDestroyBuffer(vulkanDevice->logicalDevice, indices.buffer, nullptr); vkFreeMemory(vulkanDevice->logicalDevice, indices.memory, nullptr); for (Image image : images) { vkDestroyImageView(vulkanDevice->logicalDevice, image.texture.view, nullptr); vkDestroyImage(vulkanDevice->logicalDevice, image.texture.image, nullptr); vkDestroySampler(vulkanDevice->logicalDevice, image.texture.sampler, nullptr); vkFreeMemory(vulkanDevice->logicalDevice, image.texture.deviceMemory, nullptr); } } /* glTF loading functions The following functions take a glTF input model loaded via tinyglTF and convert all required data into our own structure */ void loadImages(tinygltf::Model& input) { // Images can be stored inside the glTF (which is the case for the sample model), so instead of directly // loading them from disk, we fetch them from the glTF loader and upload the buffers images.resize(input.images.size()); for (size_t i = 0; i < input.images.size(); i++) { tinygltf::Image& glTFImage = input.images[i]; // Get the image data from the glTF loader unsigned char* buffer = nullptr; VkDeviceSize bufferSize = 0; bool deleteBuffer = false; // We convert RGB-only images to RGBA, as most devices don't support RGB-formats in Vulkan if (glTFImage.component == 3) { bufferSize = glTFImage.width * glTFImage.height * 4; buffer = new unsigned char[bufferSize]; unsigned char* rgba = buffer; unsigned char* rgb = &glTFImage.image[0]; for (size_t i = 0; i < glTFImage.width * glTFImage.height; ++i) { memcpy(rgba, rgb, sizeof(unsigned char) * 3); rgba += 4; rgb += 3; } deleteBuffer = true; } else { buffer = &glTFImage.image[0]; bufferSize = glTFImage.image.size(); } // Load texture from image buffer images[i].texture.fromBuffer(buffer, bufferSize, VK_FORMAT_R8G8B8A8_UNORM, glTFImage.width, glTFImage.height, vulkanDevice, copyQueue); if (deleteBuffer) { delete[] buffer; } } } void loadTextures(tinygltf::Model& input) { textures.resize(input.textures.size()); for (size_t i = 0; i < input.textures.size(); i++) { textures[i].imageIndex = input.textures[i].source; } } void loadMaterials(tinygltf::Model& input) { materials.resize(input.materials.size()); for (size_t i = 0; i < input.materials.size(); i++) { // We only read the most basic properties required for our sample tinygltf::Material glTFMaterial = input.materials[i]; // Get the base color factor if (glTFMaterial.values.find("baseColorFactor") != glTFMaterial.values.end()) { materials[i].baseColorFactor = glm::make_vec4(glTFMaterial.values["baseColorFactor"].ColorFactor().data()); } // Get base color texture index if (glTFMaterial.values.find("baseColorTexture") != glTFMaterial.values.end()) { materials[i].baseColorTextureIndex = glTFMaterial.values["baseColorTexture"].TextureIndex(); } } } void loadNode(const tinygltf::Node& inputNode, const tinygltf::Model& input, VulkanglTFModel::Node* parent, std::vector& indexBuffer, std::vector& vertexBuffer) { VulkanglTFModel::Node* node = new VulkanglTFModel::Node{}; node->matrix = glm::mat4(1.0f); node->parent = parent; // Get the local node matrix // It's either made up from translation, rotation, scale or a 4x4 matrix if (inputNode.translation.size() == 3) { node->matrix = glm::translate(node->matrix, glm::vec3(glm::make_vec3(inputNode.translation.data()))); } if (inputNode.rotation.size() == 4) { glm::quat q = glm::make_quat(inputNode.rotation.data()); node->matrix *= glm::mat4(q); } if (inputNode.scale.size() == 3) { node->matrix = glm::scale(node->matrix, glm::vec3(glm::make_vec3(inputNode.scale.data()))); } if (inputNode.matrix.size() == 16) { node->matrix = glm::make_mat4x4(inputNode.matrix.data()); }; // Load node's children if (inputNode.children.size() > 0) { for (size_t i = 0; i < inputNode.children.size(); i++) { loadNode(input.nodes[inputNode.children[i]], input , node, indexBuffer, vertexBuffer); } } // If the node contains mesh data, we load vertices and indices from the buffers // In glTF this is done via accessors and buffer views if (inputNode.mesh > -1) { const tinygltf::Mesh mesh = input.meshes[inputNode.mesh]; // Iterate through all primitives of this node's mesh for (size_t i = 0; i < mesh.primitives.size(); i++) { const tinygltf::Primitive& glTFPrimitive = mesh.primitives[i]; uint32_t firstIndex = static_cast(indexBuffer.size()); uint32_t vertexStart = static_cast(vertexBuffer.size()); uint32_t indexCount = 0; // Vertices { const float* positionBuffer = nullptr; const float* normalsBuffer = nullptr; const float* texCoordsBuffer = nullptr; size_t vertexCount = 0; // Get buffer data for vertex positions if (glTFPrimitive.attributes.find("POSITION") != glTFPrimitive.attributes.end()) { const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.attributes.find("POSITION")->second]; const tinygltf::BufferView& view = input.bufferViews[accessor.bufferView]; positionBuffer = reinterpret_cast(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset])); vertexCount = accessor.count; } // Get buffer data for vertex normals if (glTFPrimitive.attributes.find("NORMAL") != glTFPrimitive.attributes.end()) { const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.attributes.find("NORMAL")->second]; const tinygltf::BufferView& view = input.bufferViews[accessor.bufferView]; normalsBuffer = reinterpret_cast(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset])); } // Get buffer data for vertex texture coordinates // glTF supports multiple sets, we only load the first one if (glTFPrimitive.attributes.find("TEXCOORD_0") != glTFPrimitive.attributes.end()) { const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.attributes.find("TEXCOORD_0")->second]; const tinygltf::BufferView& view = input.bufferViews[accessor.bufferView]; texCoordsBuffer = reinterpret_cast(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset])); } // Append data to model's vertex buffer for (size_t v = 0; v < vertexCount; v++) { Vertex vert{}; vert.pos = glm::vec4(glm::make_vec3(&positionBuffer[v * 3]), 1.0f); vert.normal = glm::normalize(glm::vec3(normalsBuffer ? glm::make_vec3(&normalsBuffer[v * 3]) : glm::vec3(0.0f))); vert.uv = texCoordsBuffer ? glm::make_vec2(&texCoordsBuffer[v * 2]) : glm::vec3(0.0f); vert.color = glm::vec3(1.0f); vertexBuffer.push_back(vert); } } // Indices { const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.indices]; const tinygltf::BufferView& bufferView = input.bufferViews[accessor.bufferView]; const tinygltf::Buffer& buffer = input.buffers[bufferView.buffer]; indexCount += static_cast(accessor.count); // glTF supports different component types of indices switch (accessor.componentType) { case TINYGLTF_PARAMETER_TYPE_UNSIGNED_INT: { const uint32_t* buf = reinterpret_cast(&buffer.data[accessor.byteOffset + bufferView.byteOffset]); for (size_t index = 0; index < accessor.count; index++) { indexBuffer.push_back(buf[index] + vertexStart); } break; } case TINYGLTF_PARAMETER_TYPE_UNSIGNED_SHORT: { const uint16_t* buf = reinterpret_cast(&buffer.data[accessor.byteOffset + bufferView.byteOffset]); for (size_t index = 0; index < accessor.count; index++) { indexBuffer.push_back(buf[index] + vertexStart); } break; } case TINYGLTF_PARAMETER_TYPE_UNSIGNED_BYTE: { const uint8_t* buf = reinterpret_cast(&buffer.data[accessor.byteOffset + bufferView.byteOffset]); for (size_t index = 0; index < accessor.count; index++) { indexBuffer.push_back(buf[index] + vertexStart); } break; } default: std::cerr << "Index component type " << accessor.componentType << " not supported!" << std::endl; return; } } Primitive primitive{}; primitive.firstIndex = firstIndex; primitive.indexCount = indexCount; primitive.materialIndex = glTFPrimitive.material; node->mesh.primitives.push_back(primitive); } } if (parent) { parent->children.push_back(node); } else { nodes.push_back(node); } } /* glTF rendering functions */ // Draw a single node including child nodes (if present) void drawNode(VkCommandBuffer commandBuffer, VkPipelineLayout pipelineLayout, VulkanglTFModel::Node* node) { if (node->mesh.primitives.size() > 0) { // Pass the node's matrix via push constants // Traverse the node hierarchy to the top-most parent to get the final matrix of the current node glm::mat4 nodeMatrix = node->matrix; VulkanglTFModel::Node* currentParent = node->parent; while (currentParent) { nodeMatrix = currentParent->matrix * nodeMatrix; currentParent = currentParent->parent; } // Pass the final matrix to the vertex shader using push constants vkCmdPushConstants(commandBuffer, pipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(glm::mat4), &nodeMatrix); for (VulkanglTFModel::Primitive& primitive : node->mesh.primitives) { if (primitive.indexCount > 0) { // Get the texture index for this primitive VulkanglTFModel::Texture texture = textures[materials[primitive.materialIndex].baseColorTextureIndex]; // Bind the descriptor for the current primitive's texture vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 1, 1, &images[texture.imageIndex].descriptorSet, 0, nullptr); vkCmdDrawIndexed(commandBuffer, primitive.indexCount, 1, primitive.firstIndex, 0, 0); } } } for (auto& child : node->children) { drawNode(commandBuffer, pipelineLayout, child); } } // Draw the glTF scene starting at the top-level-nodes void draw(VkCommandBuffer commandBuffer, VkPipelineLayout pipelineLayout) { // All vertices and indices are stored in single buffers, so we only need to bind once VkDeviceSize offsets[1] = { 0 }; vkCmdBindVertexBuffers(commandBuffer, 0, 1, &vertices.buffer, offsets); vkCmdBindIndexBuffer(commandBuffer, indices.buffer, 0, VK_INDEX_TYPE_UINT32); // Render all nodes at top-level for (auto& node : nodes) { drawNode(commandBuffer, pipelineLayout, node); } } }; class VulkanExample : public VulkanExampleBase { public: bool wireframe = false; VulkanglTFModel glTFModel; struct ShaderData { vks::Buffer buffer; struct Values { glm::mat4 projection; glm::mat4 model; glm::vec4 lightPos = glm::vec4(5.0f, 5.0f, -5.0f, 1.0f); glm::vec4 viewPos; } values; } shaderData; struct Pipelines { VkPipeline solid; VkPipeline wireframe = VK_NULL_HANDLE; } pipelines; VkPipelineLayout pipelineLayout; VkDescriptorSet descriptorSet; struct DescriptorSetLayouts { VkDescriptorSetLayout matrices; VkDescriptorSetLayout textures; } descriptorSetLayouts; VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) { title = "homework1"; camera.type = Camera::CameraType::lookat; camera.flipY = true; camera.setPosition(glm::vec3(0.0f, -0.1f, -1.0f)); camera.setRotation(glm::vec3(0.0f, 45.0f, 0.0f)); camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f); } ~VulkanExample() { // Clean up used Vulkan resources // Note : Inherited destructor cleans up resources stored in base class vkDestroyPipeline(device, pipelines.solid, nullptr); if (pipelines.wireframe != VK_NULL_HANDLE) { vkDestroyPipeline(device, pipelines.wireframe, nullptr); } vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.matrices, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.textures, nullptr); shaderData.buffer.destroy(); } virtual void getEnabledFeatures() { // Fill mode non solid is required for wireframe display if (deviceFeatures.fillModeNonSolid) { enabledFeatures.fillModeNonSolid = VK_TRUE; }; } void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = defaultClearColor; clearValues[0].color = { { 0.25f, 0.25f, 0.25f, 1.0f } };; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; const VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f); const VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0); for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { renderPassBeginInfo.framebuffer = frameBuffers[i]; VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); // Bind scene matrices descriptor to set 0 vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, nullptr); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, wireframe ? pipelines.wireframe : pipelines.solid); glTFModel.draw(drawCmdBuffers[i], pipelineLayout); drawUI(drawCmdBuffers[i]); vkCmdEndRenderPass(drawCmdBuffers[i]); VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } void loadglTFFile(std::string filename) { tinygltf::Model glTFInput; tinygltf::TinyGLTF gltfContext; std::string error, warning; this->device = device; #if defined(__ANDROID__) // On Android all assets are packed with the apk in a compressed form, so we need to open them using the asset manager // We let tinygltf handle this, by passing the asset manager of our app tinygltf::asset_manager = androidApp->activity->assetManager; #endif bool fileLoaded = gltfContext.LoadASCIIFromFile(&glTFInput, &error, &warning, filename); // Pass some Vulkan resources required for setup and rendering to the glTF model loading class glTFModel.vulkanDevice = vulkanDevice; glTFModel.copyQueue = queue; std::vector indexBuffer; std::vector vertexBuffer; if (fileLoaded) { glTFModel.loadImages(glTFInput); glTFModel.loadMaterials(glTFInput); glTFModel.loadTextures(glTFInput); const tinygltf::Scene& scene = glTFInput.scenes[0]; for (size_t i = 0; i < scene.nodes.size(); i++) { const tinygltf::Node node = glTFInput.nodes[scene.nodes[i]]; glTFModel.loadNode(node, glTFInput, nullptr, indexBuffer, vertexBuffer); } } else { vks::tools::exitFatal("Could not open the glTF file.\n\nThe file is part of the additional asset pack.\n\nRun \"download_assets.py\" in the repository root to download the latest version.", -1); return; } // Create and upload vertex and index buffer // We will be using one single vertex buffer and one single index buffer for the whole glTF scene // Primitives (of the glTF model) will then index into these using index offsets size_t vertexBufferSize = vertexBuffer.size() * sizeof(VulkanglTFModel::Vertex); size_t indexBufferSize = indexBuffer.size() * sizeof(uint32_t); glTFModel.indices.count = static_cast(indexBuffer.size()); struct StagingBuffer { VkBuffer buffer; VkDeviceMemory memory; } vertexStaging, indexStaging; // Create host visible staging buffers (source) VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, vertexBufferSize, &vertexStaging.buffer, &vertexStaging.memory, vertexBuffer.data())); // Index data VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, indexBufferSize, &indexStaging.buffer, &indexStaging.memory, indexBuffer.data())); // Create device local buffers (target) VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, vertexBufferSize, &glTFModel.vertices.buffer, &glTFModel.vertices.memory)); VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, indexBufferSize, &glTFModel.indices.buffer, &glTFModel.indices.memory)); // Copy data from staging buffers (host) do device local buffer (gpu) VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); VkBufferCopy copyRegion = {}; copyRegion.size = vertexBufferSize; vkCmdCopyBuffer( copyCmd, vertexStaging.buffer, glTFModel.vertices.buffer, 1, ©Region); copyRegion.size = indexBufferSize; vkCmdCopyBuffer( copyCmd, indexStaging.buffer, glTFModel.indices.buffer, 1, ©Region); vulkanDevice->flushCommandBuffer(copyCmd, queue, true); // Free staging resources vkDestroyBuffer(device, vertexStaging.buffer, nullptr); vkFreeMemory(device, vertexStaging.memory, nullptr); vkDestroyBuffer(device, indexStaging.buffer, nullptr); vkFreeMemory(device, indexStaging.memory, nullptr); } void loadAssets() { loadglTFFile(getAssetPath() + "buster_drone/busterDrone.gltf"); } void setupDescriptors() { /* This sample uses separate descriptor sets (and layouts) for the matrices and materials (textures) */ std::vector poolSizes = { vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1), // One combined image sampler per model image/texture vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, static_cast(glTFModel.images.size())), }; // One set for matrices and one per model image/texture const uint32_t maxSetCount = static_cast(glTFModel.images.size()) + 1; VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, maxSetCount); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); // Descriptor set layout for passing matrices VkDescriptorSetLayoutBinding setLayoutBinding = vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0); VkDescriptorSetLayoutCreateInfo descriptorSetLayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(&setLayoutBinding, 1); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayouts.matrices)); // Descriptor set layout for passing material textures setLayoutBinding = vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 0); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayouts.textures)); // Pipeline layout using both descriptor sets (set 0 = matrices, set 1 = material) std::array setLayouts = { descriptorSetLayouts.matrices, descriptorSetLayouts.textures }; VkPipelineLayoutCreateInfo pipelineLayoutCI= vks::initializers::pipelineLayoutCreateInfo(setLayouts.data(), static_cast(setLayouts.size())); // We will use push constants to push the local matrices of a primitive to the vertex shader VkPushConstantRange pushConstantRange = vks::initializers::pushConstantRange(VK_SHADER_STAGE_VERTEX_BIT, sizeof(glm::mat4), 0); // Push constant ranges are part of the pipeline layout pipelineLayoutCI.pushConstantRangeCount = 1; pipelineLayoutCI.pPushConstantRanges = &pushConstantRange; VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayout)); // Descriptor set for scene matrices VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.matrices, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet)); VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &shaderData.buffer.descriptor); vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr); // Descriptor sets for materials for (auto& image : glTFModel.images) { const VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.textures, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &image.descriptorSet)); VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(image.descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &image.texture.descriptor); vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr); } } void preparePipelines() { VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationStateCI = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentStateCI = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendStateCI = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentStateCI); VkPipelineDepthStencilStateCreateInfo depthStencilStateCI = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportStateCI = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleStateCI = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0); const std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicStateCI = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables.data(), static_cast(dynamicStateEnables.size()), 0); // Vertex input bindings and attributes const std::vector vertexInputBindings = { vks::initializers::vertexInputBindingDescription(0, sizeof(VulkanglTFModel::Vertex), VK_VERTEX_INPUT_RATE_VERTEX), }; const std::vector vertexInputAttributes = { vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, pos)), // Location 0: Position vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, normal)),// Location 1: Normal vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, uv)), // Location 2: Texture coordinates vks::initializers::vertexInputAttributeDescription(0, 3, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, color)), // Location 3: Color }; VkPipelineVertexInputStateCreateInfo vertexInputStateCI = vks::initializers::pipelineVertexInputStateCreateInfo(); vertexInputStateCI.vertexBindingDescriptionCount = static_cast(vertexInputBindings.size()); vertexInputStateCI.pVertexBindingDescriptions = vertexInputBindings.data(); vertexInputStateCI.vertexAttributeDescriptionCount = static_cast(vertexInputAttributes.size()); vertexInputStateCI.pVertexAttributeDescriptions = vertexInputAttributes.data(); const std::array shaderStages = { loadShader(getHomeworkShadersPath() + "homework1/mesh.vert.spv", VK_SHADER_STAGE_VERTEX_BIT), loadShader(getHomeworkShadersPath() + "homework1/mesh.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT) }; VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0); pipelineCI.pVertexInputState = &vertexInputStateCI; pipelineCI.pInputAssemblyState = &inputAssemblyStateCI; pipelineCI.pRasterizationState = &rasterizationStateCI; pipelineCI.pColorBlendState = &colorBlendStateCI; pipelineCI.pMultisampleState = &multisampleStateCI; pipelineCI.pViewportState = &viewportStateCI; pipelineCI.pDepthStencilState = &depthStencilStateCI; pipelineCI.pDynamicState = &dynamicStateCI; pipelineCI.stageCount = static_cast(shaderStages.size()); pipelineCI.pStages = shaderStages.data(); // Solid rendering pipeline VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.solid)); // Wire frame rendering pipeline if (deviceFeatures.fillModeNonSolid) { rasterizationStateCI.polygonMode = VK_POLYGON_MODE_LINE; rasterizationStateCI.lineWidth = 1.0f; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.wireframe)); } } // Prepare and initialize uniform buffer containing shader uniforms void prepareUniformBuffers() { // Vertex shader uniform buffer block VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &shaderData.buffer, sizeof(shaderData.values))); // Map persistent VK_CHECK_RESULT(shaderData.buffer.map()); updateUniformBuffers(); } void updateUniformBuffers() { shaderData.values.projection = camera.matrices.perspective; shaderData.values.model = camera.matrices.view; shaderData.values.viewPos = camera.viewPos; memcpy(shaderData.buffer.mapped, &shaderData.values, sizeof(shaderData.values)); } void prepare() { VulkanExampleBase::prepare(); loadAssets(); prepareUniformBuffers(); setupDescriptors(); preparePipelines(); buildCommandBuffers(); prepared = true; } virtual void render() { renderFrame(); if (camera.updated) { updateUniformBuffers(); } } virtual void viewChanged() { updateUniformBuffers(); } virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay) { if (overlay->header("Settings")) { if (overlay->checkBox("Wireframe", &wireframe)) { buildCommandBuffers(); } } } }; VULKAN_EXAMPLE_MAIN()