plumageRender/base/VulkanDevice.hpp

390 lines
14 KiB
C++

/*
* Vulkan device class
*
* Encapsulates a physical Vulkan device and it's logical representation
*
* Copyright (C) 2016-2018 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#pragma once
#include <cstdio>
#include <exception>
#include <assert.h>
#include <algorithm>
#include <cstring>
#include <vector>
#include "vulkan/vulkan.h"
#if defined(VK_USE_PLATFORM_MACOS_MVK) && (VK_HEADER_VERSION >= 216)
#include <vulkan/vulkan_beta.h>
#endif
#if defined(VK_USE_PLATFORM_ANDROID_KHR)
#include "VulkanAndroid.h"
#endif
#include "VulkanTools.h"
namespace vks
{
struct VulkanDevice
{
VkPhysicalDevice physicalDevice;
VkDevice logicalDevice;
VkPhysicalDeviceProperties properties;
VkPhysicalDeviceFeatures features;
VkPhysicalDeviceFeatures enabledFeatures;
VkPhysicalDeviceMemoryProperties memoryProperties;
std::vector<VkQueueFamilyProperties> queueFamilyProperties;
VkCommandPool commandPool = VK_NULL_HANDLE;
struct {
uint32_t graphics;
uint32_t compute;
} queueFamilyIndices;
operator VkDevice() { return logicalDevice; };
/**
* Default constructor
*
* @param physicalDevice Physical device that is to be used
*/
VulkanDevice(VkPhysicalDevice physicalDevice)
{
assert(physicalDevice);
this->physicalDevice = physicalDevice;
// Store Properties features, limits and properties of the physical device for later use
// Device properties also contain limits and sparse properties
vkGetPhysicalDeviceProperties(physicalDevice, &properties);
// Features should be checked by the examples before using them
vkGetPhysicalDeviceFeatures(physicalDevice, &features);
// Memory properties are used regularly for creating all kinds of buffers
vkGetPhysicalDeviceMemoryProperties(physicalDevice, &memoryProperties);
// Queue family properties, used for setting up requested queues upon device creation
uint32_t queueFamilyCount;
vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &queueFamilyCount, nullptr);
assert(queueFamilyCount > 0);
queueFamilyProperties.resize(queueFamilyCount);
vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &queueFamilyCount, queueFamilyProperties.data());
}
/**
* Default destructor
*
* @note Frees the logical device
*/
~VulkanDevice()
{
if (commandPool) {
vkDestroyCommandPool(logicalDevice, commandPool, nullptr);
}
if (logicalDevice) {
vkDestroyDevice(logicalDevice, nullptr);
}
}
/**
* Get the index of a memory type that has all the requested property bits set
*
* @param typeBits Bitmask with bits set for each memory type supported by the resource to request for (from VkMemoryRequirements)
* @param properties Bitmask of properties for the memory type to request
* @param (Optional) memTypeFound Pointer to a bool that is set to true if a matching memory type has been found
*
* @return Index of the requested memory type
*
* @throw Throws an exception if memTypeFound is null and no memory type could be found that supports the requested properties
*/
uint32_t getMemoryType(uint32_t typeBits, VkMemoryPropertyFlags properties, VkBool32 *memTypeFound = nullptr)
{
for (uint32_t i = 0; i < memoryProperties.memoryTypeCount; i++) {
if ((typeBits & 1) == 1) {
if ((memoryProperties.memoryTypes[i].propertyFlags & properties) == properties) {
if (memTypeFound) {
*memTypeFound = true;
}
return i;
}
}
typeBits >>= 1;
}
if (memTypeFound) {
*memTypeFound = false;
return 0;
} else {
throw std::runtime_error("Could not find a matching memory type");
}
}
/**
* Get the index of a queue family that supports the requested queue flags
*
* @param queueFlags Queue flags to find a queue family index for
*
* @return Index of the queue family index that matches the flags
*
* @throw Throws an exception if no queue family index could be found that supports the requested flags
*/
uint32_t getQueueFamilyIndex(VkQueueFlagBits queueFlags)
{
// Dedicated queue for compute
// Try to find a queue family index that supports compute but not graphics
if (queueFlags & VK_QUEUE_COMPUTE_BIT)
{
for (uint32_t i = 0; i < static_cast<uint32_t>(queueFamilyProperties.size()); i++) {
if ((queueFamilyProperties[i].queueFlags & queueFlags) && ((queueFamilyProperties[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) == 0)) {
return i;
break;
}
}
}
// For other queue types or if no separate compute queue is present, return the first one to support the requested flags
for (uint32_t i = 0; i < static_cast<uint32_t>(queueFamilyProperties.size()); i++) {
if (queueFamilyProperties[i].queueFlags & queueFlags) {
return i;
break;
}
}
throw std::runtime_error("Could not find a matching queue family index");
}
/**
* Create the logical device based on the assigned physical device, also gets default queue family indices
*
* @param enabledFeatures Can be used to enable certain features upon device creation
* @param requestedQueueTypes Bit flags specifying the queue types to be requested from the device
*
* @return VkResult of the device creation call
*/
VkResult createLogicalDevice(VkPhysicalDeviceFeatures enabledFeatures, std::vector<const char*> enabledExtensions, VkQueueFlags requestedQueueTypes = VK_QUEUE_GRAPHICS_BIT | VK_QUEUE_COMPUTE_BIT)
{
// Desired queues need to be requested upon logical device creation
// Due to differing queue family configurations of Vulkan implementations this can be a bit tricky, especially if the application
// requests different queue types
std::vector<VkDeviceQueueCreateInfo> queueCreateInfos{};
// Get queue family indices for the requested queue family types
// Note that the indices may overlap depending on the implementation
const float defaultQueuePriority(0.0f);
// Graphics queue
if (requestedQueueTypes & VK_QUEUE_GRAPHICS_BIT) {
queueFamilyIndices.graphics = getQueueFamilyIndex(VK_QUEUE_GRAPHICS_BIT);
VkDeviceQueueCreateInfo queueInfo{};
queueInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queueInfo.queueFamilyIndex = queueFamilyIndices.graphics;
queueInfo.queueCount = 1;
queueInfo.pQueuePriorities = &defaultQueuePriority;
queueCreateInfos.push_back(queueInfo);
} else {
queueFamilyIndices.graphics = 0;
}
// Dedicated compute queue
if (requestedQueueTypes & VK_QUEUE_COMPUTE_BIT) {
queueFamilyIndices.compute = getQueueFamilyIndex(VK_QUEUE_COMPUTE_BIT);
if (queueFamilyIndices.compute != queueFamilyIndices.graphics) {
// If compute family index differs, we need an additional queue create info for the compute queue
VkDeviceQueueCreateInfo queueInfo{};
queueInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queueInfo.queueFamilyIndex = queueFamilyIndices.compute;
queueInfo.queueCount = 1;
queueInfo.pQueuePriorities = &defaultQueuePriority;
queueCreateInfos.push_back(queueInfo);
}
} else {
// Else we use the same queue
queueFamilyIndices.compute = queueFamilyIndices.graphics;
}
// Create the logical device representation
std::vector<const char*> deviceExtensions(enabledExtensions);
deviceExtensions.push_back(VK_KHR_SWAPCHAIN_EXTENSION_NAME);
#if defined(VK_USE_PLATFORM_MACOS_MVK) && (VK_HEADER_VERSION >= 216)
deviceExtensions.push_back(VK_KHR_PORTABILITY_SUBSET_EXTENSION_NAME);
#endif
VkDeviceCreateInfo deviceCreateInfo = {};
deviceCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
deviceCreateInfo.queueCreateInfoCount = static_cast<uint32_t>(queueCreateInfos.size());;
deviceCreateInfo.pQueueCreateInfos = queueCreateInfos.data();
deviceCreateInfo.pEnabledFeatures = &enabledFeatures;
if (deviceExtensions.size() > 0) {
deviceCreateInfo.enabledExtensionCount = (uint32_t)deviceExtensions.size();
deviceCreateInfo.ppEnabledExtensionNames = deviceExtensions.data();
}
VkResult result = vkCreateDevice(physicalDevice, &deviceCreateInfo, nullptr, &logicalDevice);
if (result == VK_SUCCESS) {
commandPool = createCommandPool(queueFamilyIndices.graphics);
}
this->enabledFeatures = enabledFeatures;
return result;
}
/**
* Create a buffer on the device
*
* @param usageFlags Usage flag bitmask for the buffer (i.e. index, vertex, uniform buffer)
* @param memoryPropertyFlags Memory properties for this buffer (i.e. device local, host visible, coherent)
* @param size Size of the buffer in byes
* @param buffer Pointer to the buffer handle acquired by the function
* @param memory Pointer to the memory handle acquired by the function
* @param data Pointer to the data that should be copied to the buffer after creation (optional, if not set, no data is copied over)
*
* @return VK_SUCCESS if buffer handle and memory have been created and (optionally passed) data has been copied
*/
VkResult createBuffer(VkBufferUsageFlags usageFlags, VkMemoryPropertyFlags memoryPropertyFlags, VkDeviceSize size, VkBuffer *buffer, VkDeviceMemory *memory, void *data = nullptr)
{
// Create the buffer handle
VkBufferCreateInfo bufferCreateInfo{};
bufferCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufferCreateInfo.usage = usageFlags;
bufferCreateInfo.size = size;
bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VK_CHECK_RESULT(vkCreateBuffer(logicalDevice, &bufferCreateInfo, nullptr, buffer));
// Create the memory backing up the buffer handle
VkMemoryRequirements memReqs;
VkMemoryAllocateInfo memAlloc{};
memAlloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
vkGetBufferMemoryRequirements(logicalDevice, *buffer, &memReqs);
memAlloc.allocationSize = memReqs.size;
// Find a memory type index that fits the properties of the buffer
memAlloc.memoryTypeIndex = getMemoryType(memReqs.memoryTypeBits, memoryPropertyFlags);
VK_CHECK_RESULT(vkAllocateMemory(logicalDevice, &memAlloc, nullptr, memory));
// If a pointer to the buffer data has been passed, map the buffer and copy over the data
if (data != nullptr)
{
void *mapped;
VK_CHECK_RESULT(vkMapMemory(logicalDevice, *memory, 0, size, 0, &mapped));
memcpy(mapped, data, size);
// If host coherency hasn't been requested, do a manual flush to make writes visible
if ((memoryPropertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) == 0)
{
VkMappedMemoryRange mappedRange{};
mappedRange.sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
mappedRange.memory = *memory;
mappedRange.offset = 0;
mappedRange.size = size;
vkFlushMappedMemoryRanges(logicalDevice, 1, &mappedRange);
}
vkUnmapMemory(logicalDevice, *memory);
}
// Attach the memory to the buffer object
VK_CHECK_RESULT(vkBindBufferMemory(logicalDevice, *buffer, *memory, 0));
return VK_SUCCESS;
}
/**
* Create a command pool for allocation command buffers from
*
* @param queueFamilyIndex Family index of the queue to create the command pool for
* @param createFlags (Optional) Command pool creation flags (Defaults to VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT)
*
* @note Command buffers allocated from the created pool can only be submitted to a queue with the same family index
*
* @return A handle to the created command buffer
*/
VkCommandPool createCommandPool(uint32_t queueFamilyIndex, VkCommandPoolCreateFlags createFlags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT)
{
VkCommandPoolCreateInfo cmdPoolInfo = {};
cmdPoolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
cmdPoolInfo.queueFamilyIndex = queueFamilyIndex;
cmdPoolInfo.flags = createFlags;
VkCommandPool cmdPool;
VK_CHECK_RESULT(vkCreateCommandPool(logicalDevice, &cmdPoolInfo, nullptr, &cmdPool));
return cmdPool;
}
/**
* Allocate a command buffer from the command pool
*
* @param level Level of the new command buffer (primary or secondary)
* @param (Optional) begin If true, recording on the new command buffer will be started (vkBeginCommandBuffer) (Defaults to false)
*
* @return A handle to the allocated command buffer
*/
VkCommandBuffer createCommandBuffer(VkCommandBufferLevel level, bool begin = false)
{
VkCommandBufferAllocateInfo cmdBufAllocateInfo{};
cmdBufAllocateInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
cmdBufAllocateInfo.commandPool = commandPool;
cmdBufAllocateInfo.level = level;
cmdBufAllocateInfo.commandBufferCount = 1;
VkCommandBuffer cmdBuffer;
VK_CHECK_RESULT(vkAllocateCommandBuffers(logicalDevice, &cmdBufAllocateInfo, &cmdBuffer));
// If requested, also start recording for the new command buffer
if (begin) {
VkCommandBufferBeginInfo commandBufferBI{};
commandBufferBI.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
VK_CHECK_RESULT(vkBeginCommandBuffer(cmdBuffer, &commandBufferBI));
}
return cmdBuffer;
}
void beginCommandBuffer(VkCommandBuffer commandBuffer)
{
VkCommandBufferBeginInfo commandBufferBI{};
commandBufferBI.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
VK_CHECK_RESULT(vkBeginCommandBuffer(commandBuffer, &commandBufferBI));
}
/**
* Finish command buffer recording and submit it to a queue
*
* @param commandBuffer Command buffer to flush
* @param queue Queue to submit the command buffer to
* @param free (Optional) Free the command buffer once it has been submitted (Defaults to true)
*
* @note The queue that the command buffer is submitted to must be from the same family index as the pool it was allocated from
* @note Uses a fence to ensure command buffer has finished executing
*/
void flushCommandBuffer(VkCommandBuffer commandBuffer, VkQueue queue, bool free = true)
{
VK_CHECK_RESULT(vkEndCommandBuffer(commandBuffer));
VkSubmitInfo submitInfo{};
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &commandBuffer;
// Create fence to ensure that the command buffer has finished executing
VkFenceCreateInfo fenceInfo{};
fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
VkFence fence;
VK_CHECK_RESULT(vkCreateFence(logicalDevice, &fenceInfo, nullptr, &fence));
// Submit to the queue
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, fence));
// Wait for the fence to signal that command buffer has finished executing
VK_CHECK_RESULT(vkWaitForFences(logicalDevice, 1, &fence, VK_TRUE, 100000000000));
vkDestroyFence(logicalDevice, fence, nullptr);
if (free) {
vkFreeCommandBuffers(logicalDevice, commandPool, 1, &commandBuffer);
}
}
};
}