plumageRender/base/VulkanSwapChain.hpp

661 lines
23 KiB
C++

/*
* Class wrapping access to the swap chain
*
* A swap chain is a collection of framebuffers used for rendering and presentation to the windowing system
*
* Copyright (C) 2016-2017 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#pragma once
#include <stdlib.h>
#include <string>
#include <assert.h>
#include <stdio.h>
#include <vector>
#include <vulkan/vulkan.h>
#include "VulkanTools.h"
typedef struct _SwapChainBuffers {
VkImage image;
VkImageView view;
} SwapChainBuffer;
class VulkanSwapChain
{
private:
VkInstance instance;
VkDevice device;
VkPhysicalDevice physicalDevice;
VkSurfaceKHR surface = VK_NULL_HANDLE;
// Function pointers
PFN_vkGetPhysicalDeviceSurfaceSupportKHR fpGetPhysicalDeviceSurfaceSupportKHR;
PFN_vkGetPhysicalDeviceSurfaceCapabilitiesKHR fpGetPhysicalDeviceSurfaceCapabilitiesKHR;
PFN_vkGetPhysicalDeviceSurfaceFormatsKHR fpGetPhysicalDeviceSurfaceFormatsKHR;
PFN_vkGetPhysicalDeviceSurfacePresentModesKHR fpGetPhysicalDeviceSurfacePresentModesKHR;
PFN_vkCreateSwapchainKHR fpCreateSwapchainKHR;
PFN_vkDestroySwapchainKHR fpDestroySwapchainKHR;
PFN_vkGetSwapchainImagesKHR fpGetSwapchainImagesKHR;
PFN_vkAcquireNextImageKHR fpAcquireNextImageKHR;
PFN_vkQueuePresentKHR fpQueuePresentKHR;
public:
VkFormat colorFormat;
VkColorSpaceKHR colorSpace;
VkSwapchainKHR swapChain = VK_NULL_HANDLE;
uint32_t imageCount;
std::vector<VkImage> images;
std::vector<SwapChainBuffer> buffers;
VkExtent2D extent = {};
uint32_t queueNodeIndex = UINT32_MAX;
/** @brief Creates the platform specific surface abstraction of the native platform window used for presentation */
#if defined(VK_USE_PLATFORM_WIN32_KHR)
void initSurface(void* platformHandle, void* platformWindow)
#elif defined(VK_USE_PLATFORM_ANDROID_KHR)
void initSurface(ANativeWindow* window)
#elif defined(VK_USE_PLATFORM_WAYLAND_KHR)
void initSurface(wl_display *display, wl_surface *window)
#elif defined(VK_USE_PLATFORM_XCB_KHR)
void initSurface(xcb_connection_t* connection, xcb_window_t window)
#elif (defined(VK_USE_PLATFORM_IOS_MVK) || defined(VK_USE_PLATFORM_MACOS_MVK))
void initSurface(void* view)
#elif defined(_DIRECT2DISPLAY)
void initSurface(uint32_t width, uint32_t height)
#endif
{
VkResult err = VK_SUCCESS;
// Create the os-specific surface
#if defined(VK_USE_PLATFORM_WIN32_KHR)
VkWin32SurfaceCreateInfoKHR surfaceCreateInfo = {};
surfaceCreateInfo.sType = VK_STRUCTURE_TYPE_WIN32_SURFACE_CREATE_INFO_KHR;
surfaceCreateInfo.hinstance = (HINSTANCE)platformHandle;
surfaceCreateInfo.hwnd = (HWND)platformWindow;
err = vkCreateWin32SurfaceKHR(instance, &surfaceCreateInfo, nullptr, &surface);
#elif defined(VK_USE_PLATFORM_ANDROID_KHR)
VkAndroidSurfaceCreateInfoKHR surfaceCreateInfo = {};
surfaceCreateInfo.sType = VK_STRUCTURE_TYPE_ANDROID_SURFACE_CREATE_INFO_KHR;
surfaceCreateInfo.window = window;
err = vkCreateAndroidSurfaceKHR(instance, &surfaceCreateInfo, NULL, &surface);
#elif defined(VK_USE_PLATFORM_IOS_MVK)
VkIOSSurfaceCreateInfoMVK surfaceCreateInfo = {};
surfaceCreateInfo.sType = VK_STRUCTURE_TYPE_IOS_SURFACE_CREATE_INFO_MVK;
surfaceCreateInfo.pNext = NULL;
surfaceCreateInfo.flags = 0;
surfaceCreateInfo.pView = view;
err = vkCreateIOSSurfaceMVK(instance, &surfaceCreateInfo, nullptr, &surface);
#elif defined(VK_USE_PLATFORM_MACOS_MVK)
VkMacOSSurfaceCreateInfoMVK surfaceCreateInfo = {};
surfaceCreateInfo.sType = VK_STRUCTURE_TYPE_MACOS_SURFACE_CREATE_INFO_MVK;
surfaceCreateInfo.pNext = NULL;
surfaceCreateInfo.flags = 0;
surfaceCreateInfo.pView = view;
err = vkCreateMacOSSurfaceMVK(instance, &surfaceCreateInfo, NULL, &surface);
#elif defined(_DIRECT2DISPLAY)
createDirect2DisplaySurface(width, height);
#elif defined(VK_USE_PLATFORM_WAYLAND_KHR)
VkWaylandSurfaceCreateInfoKHR surfaceCreateInfo = {};
surfaceCreateInfo.sType = VK_STRUCTURE_TYPE_WAYLAND_SURFACE_CREATE_INFO_KHR;
surfaceCreateInfo.display = display;
surfaceCreateInfo.surface = window;
err = vkCreateWaylandSurfaceKHR(instance, &surfaceCreateInfo, nullptr, &surface);
#elif defined(VK_USE_PLATFORM_XCB_KHR)
VkXcbSurfaceCreateInfoKHR surfaceCreateInfo = {};
surfaceCreateInfo.sType = VK_STRUCTURE_TYPE_XCB_SURFACE_CREATE_INFO_KHR;
surfaceCreateInfo.connection = connection;
surfaceCreateInfo.window = window;
err = vkCreateXcbSurfaceKHR(instance, &surfaceCreateInfo, nullptr, &surface);
#endif
if (err != VK_SUCCESS) {
std::cerr << "Could not create surface!" << std::endl;
exit(err);
}
// Get available queue family properties
uint32_t queueCount;
vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &queueCount, NULL);
assert(queueCount >= 1);
std::vector<VkQueueFamilyProperties> queueProps(queueCount);
vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &queueCount, queueProps.data());
// Iterate over each queue to learn whether it supports presenting:
// Find a queue with present support
// Will be used to present the swap chain images to the windowing system
std::vector<VkBool32> supportsPresent(queueCount);
for (uint32_t i = 0; i < queueCount; i++)
{
fpGetPhysicalDeviceSurfaceSupportKHR(physicalDevice, i, surface, &supportsPresent[i]);
}
// Search for a graphics and a present queue in the array of queue
// families, try to find one that supports both
uint32_t graphicsQueueNodeIndex = UINT32_MAX;
uint32_t presentQueueNodeIndex = UINT32_MAX;
for (uint32_t i = 0; i < queueCount; i++)
{
if ((queueProps[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) != 0)
{
if (graphicsQueueNodeIndex == UINT32_MAX)
{
graphicsQueueNodeIndex = i;
}
if (supportsPresent[i] == VK_TRUE)
{
graphicsQueueNodeIndex = i;
presentQueueNodeIndex = i;
break;
}
}
}
if (presentQueueNodeIndex == UINT32_MAX)
{
// If there's no queue that supports both present and graphics
// try to find a separate present queue
for (uint32_t i = 0; i < queueCount; ++i)
{
if (supportsPresent[i] == VK_TRUE)
{
presentQueueNodeIndex = i;
break;
}
}
}
// Exit if either a graphics or a presenting queue hasn't been found
if (graphicsQueueNodeIndex == UINT32_MAX || presentQueueNodeIndex == UINT32_MAX) {
std::cerr << "Could not find a graphics and/or presenting queue!" << std::endl;
exit(-1);
}
// todo : Add support for separate graphics and presenting queue
if (graphicsQueueNodeIndex != presentQueueNodeIndex) {
std::cerr << "Separate graphics and presenting queues are not supported yet!" << std::endl;
exit(-1);
}
queueNodeIndex = graphicsQueueNodeIndex;
// Get list of supported surface formats
uint32_t formatCount;
VK_CHECK_RESULT(fpGetPhysicalDeviceSurfaceFormatsKHR(physicalDevice, surface, &formatCount, NULL));
assert(formatCount > 0);
std::vector<VkSurfaceFormatKHR> surfaceFormats(formatCount);
VK_CHECK_RESULT(fpGetPhysicalDeviceSurfaceFormatsKHR(physicalDevice, surface, &formatCount, surfaceFormats.data()));
// If the surface format list only includes one entry with VK_FORMAT_UNDEFINED,
// there is no preferered format, so we assume VK_FORMAT_B8G8R8A8_UNORM
if ((formatCount == 1) && (surfaceFormats[0].format == VK_FORMAT_UNDEFINED))
{
colorFormat = VK_FORMAT_B8G8R8A8_UNORM;
colorSpace = surfaceFormats[0].colorSpace;
}
else
{
// iterate over the list of available surface format and
// check for the presence of VK_FORMAT_B8G8R8A8_UNORM
bool found_B8G8R8A8_UNORM = false;
for (auto&& surfaceFormat : surfaceFormats)
{
// Prefer SRGB
if (surfaceFormat.format == VK_FORMAT_B8G8R8A8_SRGB)
{
colorFormat = surfaceFormat.format;
colorSpace = surfaceFormat.colorSpace;
found_B8G8R8A8_UNORM = true;
break;
}
//if (surfaceFormat.format == VK_FORMAT_B8G8R8A8_UNORM)
//{
// colorFormat = surfaceFormat.format;
// colorSpace = surfaceFormat.colorSpace;
// found_B8G8R8A8_UNORM = true;
// break;
//}
}
// in case VK_FORMAT_B8G8R8A8_UNORM is not available
// select the first available color format
if (!found_B8G8R8A8_UNORM)
{
colorFormat = surfaceFormats[0].format;
colorSpace = surfaceFormats[0].colorSpace;
}
}
}
/**
* Set instance, physical and logical device to use for the swapchain and get all required function pointers
*
* @param instance Vulkan instance to use
* @param physicalDevice Physical device used to query properties and formats relevant to the swapchain
* @param device Logical representation of the device to create the swapchain for
*
*/
void connect(VkInstance instance, VkPhysicalDevice physicalDevice, VkDevice device)
{
this->instance = instance;
this->physicalDevice = physicalDevice;
this->device = device;
GET_INSTANCE_PROC_ADDR(instance, GetPhysicalDeviceSurfaceSupportKHR);
GET_INSTANCE_PROC_ADDR(instance, GetPhysicalDeviceSurfaceCapabilitiesKHR);
GET_INSTANCE_PROC_ADDR(instance, GetPhysicalDeviceSurfaceFormatsKHR);
GET_INSTANCE_PROC_ADDR(instance, GetPhysicalDeviceSurfacePresentModesKHR);
GET_DEVICE_PROC_ADDR(device, CreateSwapchainKHR);
GET_DEVICE_PROC_ADDR(device, DestroySwapchainKHR);
GET_DEVICE_PROC_ADDR(device, GetSwapchainImagesKHR);
GET_DEVICE_PROC_ADDR(device, AcquireNextImageKHR);
GET_DEVICE_PROC_ADDR(device, QueuePresentKHR);
}
/**
* Create the swapchain and get it's images with given width and height
*
* @param width Pointer to the width of the swapchain (may be adjusted to fit the requirements of the swapchain)
* @param height Pointer to the height of the swapchain (may be adjusted to fit the requirements of the swapchain)
* @param vsync (Optional) Can be used to force vsync'd rendering (by using VK_PRESENT_MODE_FIFO_KHR as presentation mode)
*/
void create(uint32_t *width, uint32_t *height, bool vsync = false)
{
VkSwapchainKHR oldSwapchain = swapChain;
// Get physical device surface properties and formats
VkSurfaceCapabilitiesKHR surfCaps;
VK_CHECK_RESULT(fpGetPhysicalDeviceSurfaceCapabilitiesKHR(physicalDevice, surface, &surfCaps));
// Get available present modes
uint32_t presentModeCount;
VK_CHECK_RESULT(fpGetPhysicalDeviceSurfacePresentModesKHR(physicalDevice, surface, &presentModeCount, NULL));
assert(presentModeCount > 0);
std::vector<VkPresentModeKHR> presentModes(presentModeCount);
VK_CHECK_RESULT(fpGetPhysicalDeviceSurfacePresentModesKHR(physicalDevice, surface, &presentModeCount, presentModes.data()));
// If width (and height) equals the special value 0xFFFFFFFF, the size of the surface will be set by the swapchain
if (surfCaps.currentExtent.width == (uint32_t)-1)
{
// If the surface size is undefined, the size is set to
// the size of the images requested.
extent.width = *width;
extent.height = *height;
}
else
{
// If the surface size is defined, the swap chain size must match
extent = surfCaps.currentExtent;
*width = surfCaps.currentExtent.width;
*height = surfCaps.currentExtent.height;
}
// Select a present mode for the swapchain
// The VK_PRESENT_MODE_FIFO_KHR mode must always be present as per spec
// This mode waits for the vertical blank ("v-sync")
VkPresentModeKHR swapchainPresentMode = VK_PRESENT_MODE_FIFO_KHR;
// If v-sync is not requested, try to find a mailbox mode
// It's the lowest latency non-tearing present mode available
if (!vsync)
{
for (size_t i = 0; i < presentModeCount; i++)
{
if (presentModes[i] == VK_PRESENT_MODE_MAILBOX_KHR)
{
swapchainPresentMode = VK_PRESENT_MODE_MAILBOX_KHR;
break;
}
if ((swapchainPresentMode != VK_PRESENT_MODE_MAILBOX_KHR) && (presentModes[i] == VK_PRESENT_MODE_IMMEDIATE_KHR))
{
swapchainPresentMode = VK_PRESENT_MODE_IMMEDIATE_KHR;
}
}
}
// Determine the number of images
uint32_t desiredNumberOfSwapchainImages = surfCaps.minImageCount + 1;
if ((surfCaps.maxImageCount > 0) && (desiredNumberOfSwapchainImages > surfCaps.maxImageCount))
{
desiredNumberOfSwapchainImages = surfCaps.maxImageCount;
}
// Find the transformation of the surface
VkSurfaceTransformFlagsKHR preTransform;
if (surfCaps.supportedTransforms & VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR)
{
// We prefer a non-rotated transform
preTransform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
}
else
{
preTransform = surfCaps.currentTransform;
}
// Find a supported composite alpha format (not all devices support alpha opaque)
VkCompositeAlphaFlagBitsKHR compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
// Simply select the first composite alpha format available
std::vector<VkCompositeAlphaFlagBitsKHR> compositeAlphaFlags = {
VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR,
VK_COMPOSITE_ALPHA_PRE_MULTIPLIED_BIT_KHR,
VK_COMPOSITE_ALPHA_POST_MULTIPLIED_BIT_KHR,
VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR,
};
for (auto& compositeAlphaFlag : compositeAlphaFlags) {
if (surfCaps.supportedCompositeAlpha & compositeAlphaFlag) {
compositeAlpha = compositeAlphaFlag;
break;
};
}
VkSwapchainCreateInfoKHR swapchainCI = {};
swapchainCI.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
swapchainCI.pNext = NULL;
swapchainCI.surface = surface;
swapchainCI.minImageCount = desiredNumberOfSwapchainImages;
swapchainCI.imageFormat = colorFormat;
swapchainCI.imageColorSpace = colorSpace;
swapchainCI.imageExtent = { extent.width, extent.height };
swapchainCI.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
swapchainCI.preTransform = (VkSurfaceTransformFlagBitsKHR)preTransform;
swapchainCI.imageArrayLayers = 1;
swapchainCI.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
swapchainCI.queueFamilyIndexCount = 0;
swapchainCI.pQueueFamilyIndices = NULL;
swapchainCI.presentMode = swapchainPresentMode;
swapchainCI.oldSwapchain = oldSwapchain;
// Setting clipped to VK_TRUE allows the implementation to discard rendering outside of the surface area
swapchainCI.clipped = VK_TRUE;
swapchainCI.compositeAlpha = compositeAlpha;
// Set additional usage flag for blitting from the swapchain images if supported
VkFormatProperties formatProps;
vkGetPhysicalDeviceFormatProperties(physicalDevice, colorFormat, &formatProps);
if ((formatProps.optimalTilingFeatures & VK_FORMAT_FEATURE_TRANSFER_SRC_BIT_KHR) || (formatProps.optimalTilingFeatures & VK_FORMAT_FEATURE_BLIT_SRC_BIT)) {
swapchainCI.imageUsage |= VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
}
VK_CHECK_RESULT(fpCreateSwapchainKHR(device, &swapchainCI, nullptr, &swapChain));
// If an existing swap chain is re-created, destroy the old swap chain
// This also cleans up all the presentable images
if (oldSwapchain != VK_NULL_HANDLE)
{
for (uint32_t i = 0; i < imageCount; i++)
{
vkDestroyImageView(device, buffers[i].view, nullptr);
}
fpDestroySwapchainKHR(device, oldSwapchain, nullptr);
}
VK_CHECK_RESULT(fpGetSwapchainImagesKHR(device, swapChain, &imageCount, NULL));
// Get the swap chain images
images.resize(imageCount);
VK_CHECK_RESULT(fpGetSwapchainImagesKHR(device, swapChain, &imageCount, images.data()));
// Get the swap chain buffers containing the image and imageview
buffers.resize(imageCount);
for (uint32_t i = 0; i < imageCount; i++)
{
VkImageViewCreateInfo colorAttachmentView = {};
colorAttachmentView.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
colorAttachmentView.pNext = NULL;
colorAttachmentView.format = colorFormat;
colorAttachmentView.components = {
VK_COMPONENT_SWIZZLE_R,
VK_COMPONENT_SWIZZLE_G,
VK_COMPONENT_SWIZZLE_B,
VK_COMPONENT_SWIZZLE_A
};
colorAttachmentView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
colorAttachmentView.subresourceRange.baseMipLevel = 0;
colorAttachmentView.subresourceRange.levelCount = 1;
colorAttachmentView.subresourceRange.baseArrayLayer = 0;
colorAttachmentView.subresourceRange.layerCount = 1;
colorAttachmentView.viewType = VK_IMAGE_VIEW_TYPE_2D;
colorAttachmentView.flags = 0;
buffers[i].image = images[i];
colorAttachmentView.image = buffers[i].image;
VK_CHECK_RESULT(vkCreateImageView(device, &colorAttachmentView, nullptr, &buffers[i].view));
}
}
/**
* Acquires the next image in the swap chain
*
* @param presentCompleteSemaphore (Optional) Semaphore that is signaled when the image is ready for use
* @param imageIndex Pointer to the image index that will be increased if the next image could be acquired
*
* @note The function will always wait until the next image has been acquired by setting timeout to UINT64_MAX
*
* @return VkResult of the image acquisition
*/
VkResult acquireNextImage(VkSemaphore presentCompleteSemaphore, uint32_t *imageIndex)
{
if (swapChain == VK_NULL_HANDLE) {
// Probably acquireNextImage() is called just after cleanup() (e.g. window has been terminated on Android).
// todo : Use a dedicated error code.
return VK_ERROR_OUT_OF_DATE_KHR;
}
// By setting timeout to UINT64_MAX we will always wait until the next image has been acquired or an actual error is thrown
// With that we don't have to handle VK_NOT_READY
return fpAcquireNextImageKHR(device, swapChain, UINT64_MAX, presentCompleteSemaphore, (VkFence)nullptr, imageIndex);
}
/**
* Queue an image for presentation
*
* @param queue Presentation queue for presenting the image
* @param imageIndex Index of the swapchain image to queue for presentation
* @param waitSemaphore (Optional) Semaphore that is waited on before the image is presented (only used if != VK_NULL_HANDLE)
*
* @return VkResult of the queue presentation
*/
VkResult queuePresent(VkQueue queue, uint32_t imageIndex, VkSemaphore waitSemaphore = VK_NULL_HANDLE)
{
VkPresentInfoKHR presentInfo = {};
presentInfo.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
presentInfo.pNext = NULL;
presentInfo.swapchainCount = 1;
presentInfo.pSwapchains = &swapChain;
presentInfo.pImageIndices = &imageIndex;
// Check if a wait semaphore has been specified to wait for before presenting the image
if (waitSemaphore != VK_NULL_HANDLE)
{
presentInfo.pWaitSemaphores = &waitSemaphore;
presentInfo.waitSemaphoreCount = 1;
}
return fpQueuePresentKHR(queue, &presentInfo);
}
/**
* Destroy and free Vulkan resources used for the swapchain
*/
void cleanup()
{
if (swapChain != VK_NULL_HANDLE)
{
for (uint32_t i = 0; i < imageCount; i++)
{
vkDestroyImageView(device, buffers[i].view, nullptr);
}
}
if (surface != VK_NULL_HANDLE)
{
fpDestroySwapchainKHR(device, swapChain, nullptr);
vkDestroySurfaceKHR(instance, surface, nullptr);
}
surface = VK_NULL_HANDLE;
swapChain = VK_NULL_HANDLE;
}
#if defined(_DIRECT2DISPLAY)
void exitFatal(const std::string& message, int32_t exitCode)
{
#if defined(_WIN32)
if (!errorModeSilent) {
MessageBox(NULL, message.c_str(), NULL, MB_OK | MB_ICONERROR);
}
#elif defined(__ANDROID__)
LOGE("Fatal error: %s", message.c_str());
vks::android::showAlert(message.c_str());
#endif
std::cerr << message << "\n";
#if !defined(__ANDROID__)
exit(exitCode);
#endif
}
/**
* Create direct to display surface
*/
void createDirect2DisplaySurface(uint32_t width, uint32_t height)
{
uint32_t displayPropertyCount;
// Get display property
vkGetPhysicalDeviceDisplayPropertiesKHR(physicalDevice, &displayPropertyCount, NULL);
VkDisplayPropertiesKHR* pDisplayProperties = new VkDisplayPropertiesKHR[displayPropertyCount];
vkGetPhysicalDeviceDisplayPropertiesKHR(physicalDevice, &displayPropertyCount, pDisplayProperties);
// Get plane property
uint32_t planePropertyCount;
vkGetPhysicalDeviceDisplayPlanePropertiesKHR(physicalDevice, &planePropertyCount, NULL);
VkDisplayPlanePropertiesKHR* pPlaneProperties = new VkDisplayPlanePropertiesKHR[planePropertyCount];
vkGetPhysicalDeviceDisplayPlanePropertiesKHR(physicalDevice, &planePropertyCount, pPlaneProperties);
VkDisplayKHR display = VK_NULL_HANDLE;
VkDisplayModeKHR displayMode;
VkDisplayModePropertiesKHR* pModeProperties;
bool foundMode = false;
for(uint32_t i = 0; i < displayPropertyCount;++i)
{
display = pDisplayProperties[i].display;
uint32_t modeCount;
vkGetDisplayModePropertiesKHR(physicalDevice, display, &modeCount, NULL);
pModeProperties = new VkDisplayModePropertiesKHR[modeCount];
vkGetDisplayModePropertiesKHR(physicalDevice, display, &modeCount, pModeProperties);
for (uint32_t j = 0; j < modeCount; ++j)
{
const VkDisplayModePropertiesKHR* mode = &pModeProperties[j];
if (mode->parameters.visibleRegion.width == width && mode->parameters.visibleRegion.height == height)
{
displayMode = mode->displayMode;
foundMode = true;
break;
}
}
if (foundMode)
{
break;
}
delete [] pModeProperties;
}
if(!foundMode)
{
exitFatal("Can't find a display and a display mode!", -1);
return;
}
// Search for a best plane we can use
uint32_t bestPlaneIndex = UINT32_MAX;
VkDisplayKHR* pDisplays = NULL;
for(uint32_t i = 0; i < planePropertyCount; i++)
{
uint32_t planeIndex=i;
uint32_t displayCount;
vkGetDisplayPlaneSupportedDisplaysKHR(physicalDevice, planeIndex, &displayCount, NULL);
if (pDisplays)
{
delete [] pDisplays;
}
pDisplays = new VkDisplayKHR[displayCount];
vkGetDisplayPlaneSupportedDisplaysKHR(physicalDevice, planeIndex, &displayCount, pDisplays);
// Find a display that matches the current plane
bestPlaneIndex = UINT32_MAX;
for(uint32_t j = 0; j < displayCount; j++)
{
if(display == pDisplays[j])
{
bestPlaneIndex = i;
break;
}
}
if(bestPlaneIndex != UINT32_MAX)
{
break;
}
}
if(bestPlaneIndex == UINT32_MAX)
{
exitFatal("Can't find a plane for displaying!", -1);
return;
}
VkDisplayPlaneCapabilitiesKHR planeCap;
vkGetDisplayPlaneCapabilitiesKHR(physicalDevice, displayMode, bestPlaneIndex, &planeCap);
VkDisplayPlaneAlphaFlagBitsKHR alphaMode = (VkDisplayPlaneAlphaFlagBitsKHR)0;
if (planeCap.supportedAlpha & VK_DISPLAY_PLANE_ALPHA_PER_PIXEL_PREMULTIPLIED_BIT_KHR)
{
alphaMode = VK_DISPLAY_PLANE_ALPHA_PER_PIXEL_PREMULTIPLIED_BIT_KHR;
}
else if (planeCap.supportedAlpha & VK_DISPLAY_PLANE_ALPHA_PER_PIXEL_BIT_KHR)
{
alphaMode = VK_DISPLAY_PLANE_ALPHA_PER_PIXEL_BIT_KHR;
}
else if (planeCap.supportedAlpha & VK_DISPLAY_PLANE_ALPHA_GLOBAL_BIT_KHR)
{
alphaMode = VK_DISPLAY_PLANE_ALPHA_GLOBAL_BIT_KHR;
}
else if (planeCap.supportedAlpha & VK_DISPLAY_PLANE_ALPHA_OPAQUE_BIT_KHR)
{
alphaMode = VK_DISPLAY_PLANE_ALPHA_OPAQUE_BIT_KHR;
}
VkDisplaySurfaceCreateInfoKHR surfaceInfo{};
surfaceInfo.sType = VK_STRUCTURE_TYPE_DISPLAY_SURFACE_CREATE_INFO_KHR;
surfaceInfo.pNext = NULL;
surfaceInfo.flags = 0;
surfaceInfo.displayMode = displayMode;
surfaceInfo.planeIndex = bestPlaneIndex;
surfaceInfo.planeStackIndex = pPlaneProperties[bestPlaneIndex].currentStackIndex;
surfaceInfo.transform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
surfaceInfo.globalAlpha = 1.0;
surfaceInfo.alphaMode = alphaMode;
surfaceInfo.imageExtent.width = width;
surfaceInfo.imageExtent.height = height;
VkResult result = vkCreateDisplayPlaneSurfaceKHR(instance, &surfaceInfo, NULL, &surface);
if (result !=VK_SUCCESS) {
exitFatal("Failed to create surface!", result);
}
delete[] pDisplays;
delete[] pModeProperties;
delete[] pDisplayProperties;
delete[] pPlaneProperties;
}
#endif
};