plumageRender/base/VulkanTexture.cpp

870 lines
36 KiB
C++

/*
* Vulkan texture loader
*
* Copyright(C) by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license(MIT) (http://opensource.org/licenses/MIT)
*/
#include <VulkanTexture.h>
namespace vks
{
void Texture::updateDescriptor()
{
descriptor.sampler = sampler;
descriptor.imageView = view;
descriptor.imageLayout = imageLayout;
}
void Texture::destroy()
{
vkDestroyImageView(device->logicalDevice, view, nullptr);
vkDestroyImage(device->logicalDevice, image, nullptr);
if (sampler)
{
vkDestroySampler(device->logicalDevice, sampler, nullptr);
}
vkFreeMemory(device->logicalDevice, deviceMemory, nullptr);
}
ktxResult Texture::loadKTXFile(std::string filename, ktxTexture **target)
{
ktxResult result = KTX_SUCCESS;
#if defined(__ANDROID__)
AAsset* asset = AAssetManager_open(androidApp->activity->assetManager, filename.c_str(), AASSET_MODE_STREAMING);
if (!asset) {
vks::tools::exitFatal("Could not load texture from " + filename + "\n\nThe file may be part of the additional asset pack.\n\nRun \"download_assets.py\" in the repository root to download the latest version.", -1);
}
size_t size = AAsset_getLength(asset);
assert(size > 0);
ktx_uint8_t *textureData = new ktx_uint8_t[size];
AAsset_read(asset, textureData, size);
AAsset_close(asset);
result = ktxTexture_CreateFromMemory(textureData, size, KTX_TEXTURE_CREATE_LOAD_IMAGE_DATA_BIT, target);
delete[] textureData;
#else
if (!vks::tools::fileExists(filename)) {
vks::tools::exitFatal("Could not load texture from " + filename + "\n\nThe file may be part of the additional asset pack.\n\nRun \"download_assets.py\" in the repository root to download the latest version.", -1);
}
result = ktxTexture_CreateFromNamedFile(filename.c_str(), KTX_TEXTURE_CREATE_LOAD_IMAGE_DATA_BIT, target);
#endif
return result;
}
/**
* Load a 2D texture including all mip levels
*
* @param filename File to load (supports .ktx)
* @param format Vulkan format of the image data stored in the file
* @param device Vulkan device to create the texture on
* @param copyQueue Queue used for the texture staging copy commands (must support transfer)
* @param (Optional) imageUsageFlags Usage flags for the texture's image (defaults to VK_IMAGE_USAGE_SAMPLED_BIT)
* @param (Optional) imageLayout Usage layout for the texture (defaults VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL)
* @param (Optional) forceLinear Force linear tiling (not advised, defaults to false)
*
*/
void Texture2D::loadFromFile(std::string filename, VkFormat format, vks::VulkanDevice *device, VkQueue copyQueue, VkImageUsageFlags imageUsageFlags, VkImageLayout imageLayout, bool forceLinear)
{
ktxTexture* ktxTexture;
ktxResult result = loadKTXFile(filename, &ktxTexture);
assert(result == KTX_SUCCESS);
this->device = device;
width = ktxTexture->baseWidth;
height = ktxTexture->baseHeight;
mipLevels = ktxTexture->numLevels;
ktx_uint8_t *ktxTextureData = ktxTexture_GetData(ktxTexture);
ktx_size_t ktxTextureSize = ktxTexture_GetSize(ktxTexture);
// Get device properties for the requested texture format
VkFormatProperties formatProperties;
vkGetPhysicalDeviceFormatProperties(device->physicalDevice, format, &formatProperties);
// Only use linear tiling if requested (and supported by the device)
// Support for linear tiling is mostly limited, so prefer to use
// optimal tiling instead
// On most implementations linear tiling will only support a very
// limited amount of formats and features (mip maps, cubemaps, arrays, etc.)
VkBool32 useStaging = !forceLinear;
VkMemoryAllocateInfo memAllocInfo = vks::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
// Use a separate command buffer for texture loading
VkCommandBuffer copyCmd = device->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
if (useStaging)
{
// Create a host-visible staging buffer that contains the raw image data
VkBuffer stagingBuffer;
VkDeviceMemory stagingMemory;
VkBufferCreateInfo bufferCreateInfo = vks::initializers::bufferCreateInfo();
bufferCreateInfo.size = ktxTextureSize;
// This buffer is used as a transfer source for the buffer copy
bufferCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VK_CHECK_RESULT(vkCreateBuffer(device->logicalDevice, &bufferCreateInfo, nullptr, &stagingBuffer));
// Get memory requirements for the staging buffer (alignment, memory type bits)
vkGetBufferMemoryRequirements(device->logicalDevice, stagingBuffer, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
// Get memory type index for a host visible buffer
memAllocInfo.memoryTypeIndex = device->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device->logicalDevice, &memAllocInfo, nullptr, &stagingMemory));
VK_CHECK_RESULT(vkBindBufferMemory(device->logicalDevice, stagingBuffer, stagingMemory, 0));
// Copy texture data into staging buffer
uint8_t *data;
VK_CHECK_RESULT(vkMapMemory(device->logicalDevice, stagingMemory, 0, memReqs.size, 0, (void **)&data));
memcpy(data, ktxTextureData, ktxTextureSize);
vkUnmapMemory(device->logicalDevice, stagingMemory);
// Setup buffer copy regions for each mip level
std::vector<VkBufferImageCopy> bufferCopyRegions;
for (uint32_t i = 0; i < mipLevels; i++)
{
ktx_size_t offset;
KTX_error_code result = ktxTexture_GetImageOffset(ktxTexture, i, 0, 0, &offset);
assert(result == KTX_SUCCESS);
VkBufferImageCopy bufferCopyRegion = {};
bufferCopyRegion.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
bufferCopyRegion.imageSubresource.mipLevel = i;
bufferCopyRegion.imageSubresource.baseArrayLayer = 0;
bufferCopyRegion.imageSubresource.layerCount = 1;
bufferCopyRegion.imageExtent.width = std::max(1u, ktxTexture->baseWidth >> i);
bufferCopyRegion.imageExtent.height = std::max(1u, ktxTexture->baseHeight >> i);
bufferCopyRegion.imageExtent.depth = 1;
bufferCopyRegion.bufferOffset = offset;
bufferCopyRegions.push_back(bufferCopyRegion);
}
// Create optimal tiled target image
VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.mipLevels = mipLevels;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageCreateInfo.extent = { width, height, 1 };
imageCreateInfo.usage = imageUsageFlags;
// Ensure that the TRANSFER_DST bit is set for staging
if (!(imageCreateInfo.usage & VK_IMAGE_USAGE_TRANSFER_DST_BIT))
{
imageCreateInfo.usage |= VK_IMAGE_USAGE_TRANSFER_DST_BIT;
}
VK_CHECK_RESULT(vkCreateImage(device->logicalDevice, &imageCreateInfo, nullptr, &image));
vkGetImageMemoryRequirements(device->logicalDevice, image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
memAllocInfo.memoryTypeIndex = device->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device->logicalDevice, &memAllocInfo, nullptr, &deviceMemory));
VK_CHECK_RESULT(vkBindImageMemory(device->logicalDevice, image, deviceMemory, 0));
VkImageSubresourceRange subresourceRange = {};
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subresourceRange.baseMipLevel = 0;
subresourceRange.levelCount = mipLevels;
subresourceRange.layerCount = 1;
// Image barrier for optimal image (target)
// Optimal image will be used as destination for the copy
vks::tools::setImageLayout(
copyCmd,
image,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
subresourceRange);
// Copy mip levels from staging buffer
vkCmdCopyBufferToImage(
copyCmd,
stagingBuffer,
image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
static_cast<uint32_t>(bufferCopyRegions.size()),
bufferCopyRegions.data()
);
// Change texture image layout to shader read after all mip levels have been copied
this->imageLayout = imageLayout;
vks::tools::setImageLayout(
copyCmd,
image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
imageLayout,
subresourceRange);
device->flushCommandBuffer(copyCmd, copyQueue);
// Clean up staging resources
vkFreeMemory(device->logicalDevice, stagingMemory, nullptr);
vkDestroyBuffer(device->logicalDevice, stagingBuffer, nullptr);
}
else
{
// Prefer using optimal tiling, as linear tiling
// may support only a small set of features
// depending on implementation (e.g. no mip maps, only one layer, etc.)
// Check if this support is supported for linear tiling
assert(formatProperties.linearTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT);
VkImage mappableImage;
VkDeviceMemory mappableMemory;
VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.extent = { width, height, 1 };
imageCreateInfo.mipLevels = 1;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_LINEAR;
imageCreateInfo.usage = imageUsageFlags;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
// Load mip map level 0 to linear tiling image
VK_CHECK_RESULT(vkCreateImage(device->logicalDevice, &imageCreateInfo, nullptr, &mappableImage));
// Get memory requirements for this image
// like size and alignment
vkGetImageMemoryRequirements(device->logicalDevice, mappableImage, &memReqs);
// Set memory allocation size to required memory size
memAllocInfo.allocationSize = memReqs.size;
// Get memory type that can be mapped to host memory
memAllocInfo.memoryTypeIndex = device->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
// Allocate host memory
VK_CHECK_RESULT(vkAllocateMemory(device->logicalDevice, &memAllocInfo, nullptr, &mappableMemory));
// Bind allocated image for use
VK_CHECK_RESULT(vkBindImageMemory(device->logicalDevice, mappableImage, mappableMemory, 0));
// Get sub resource layout
// Mip map count, array layer, etc.
VkImageSubresource subRes = {};
subRes.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subRes.mipLevel = 0;
VkSubresourceLayout subResLayout;
void *data;
// Get sub resources layout
// Includes row pitch, size offsets, etc.
vkGetImageSubresourceLayout(device->logicalDevice, mappableImage, &subRes, &subResLayout);
// Map image memory
VK_CHECK_RESULT(vkMapMemory(device->logicalDevice, mappableMemory, 0, memReqs.size, 0, &data));
// Copy image data into memory
memcpy(data, ktxTextureData, memReqs.size);
vkUnmapMemory(device->logicalDevice, mappableMemory);
// Linear tiled images don't need to be staged
// and can be directly used as textures
image = mappableImage;
deviceMemory = mappableMemory;
this->imageLayout = imageLayout;
// Setup image memory barrier
vks::tools::setImageLayout(copyCmd, image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_UNDEFINED, imageLayout);
device->flushCommandBuffer(copyCmd, copyQueue);
}
ktxTexture_Destroy(ktxTexture);
// Create a default sampler
VkSamplerCreateInfo samplerCreateInfo = {};
samplerCreateInfo.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
samplerCreateInfo.magFilter = VK_FILTER_LINEAR;
samplerCreateInfo.minFilter = VK_FILTER_LINEAR;
samplerCreateInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
samplerCreateInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT;
samplerCreateInfo.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT;
samplerCreateInfo.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT;
samplerCreateInfo.mipLodBias = 0.0f;
samplerCreateInfo.compareOp = VK_COMPARE_OP_NEVER;
samplerCreateInfo.minLod = 0.0f;
// Max level-of-detail should match mip level count
samplerCreateInfo.maxLod = (useStaging) ? (float)mipLevels : 0.0f;
// Only enable anisotropic filtering if enabled on the device
samplerCreateInfo.maxAnisotropy = device->enabledFeatures.samplerAnisotropy ? device->properties.limits.maxSamplerAnisotropy : 1.0f;
samplerCreateInfo.anisotropyEnable = device->enabledFeatures.samplerAnisotropy;
samplerCreateInfo.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
VK_CHECK_RESULT(vkCreateSampler(device->logicalDevice, &samplerCreateInfo, nullptr, &sampler));
// Create image view
// Textures are not directly accessed by the shaders and
// are abstracted by image views containing additional
// information and sub resource ranges
VkImageViewCreateInfo viewCreateInfo = {};
viewCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
viewCreateInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
viewCreateInfo.format = format;
viewCreateInfo.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
// Linear tiling usually won't support mip maps
// Only set mip map count if optimal tiling is used
viewCreateInfo.subresourceRange.levelCount = (useStaging) ? mipLevels : 1;
viewCreateInfo.image = image;
VK_CHECK_RESULT(vkCreateImageView(device->logicalDevice, &viewCreateInfo, nullptr, &view));
// Update descriptor image info member that can be used for setting up descriptor sets
updateDescriptor();
}
/**
* Creates a 2D texture from a buffer
*
* @param buffer Buffer containing texture data to upload
* @param bufferSize Size of the buffer in machine units
* @param width Width of the texture to create
* @param height Height of the texture to create
* @param format Vulkan format of the image data stored in the file
* @param device Vulkan device to create the texture on
* @param copyQueue Queue used for the texture staging copy commands (must support transfer)
* @param (Optional) filter Texture filtering for the sampler (defaults to VK_FILTER_LINEAR)
* @param (Optional) imageUsageFlags Usage flags for the texture's image (defaults to VK_IMAGE_USAGE_SAMPLED_BIT)
* @param (Optional) imageLayout Usage layout for the texture (defaults VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL)
*/
void Texture2D::fromBuffer(void* buffer, VkDeviceSize bufferSize, VkFormat format, uint32_t texWidth, uint32_t texHeight, vks::VulkanDevice *device, VkQueue copyQueue, VkFilter filter, VkImageUsageFlags imageUsageFlags, VkImageLayout imageLayout)
{
assert(buffer);
this->device = device;
width = texWidth;
height = texHeight;
mipLevels = 1;
VkMemoryAllocateInfo memAllocInfo = vks::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
// Use a separate command buffer for texture loading
VkCommandBuffer copyCmd = device->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
// Create a host-visible staging buffer that contains the raw image data
VkBuffer stagingBuffer;
VkDeviceMemory stagingMemory;
VkBufferCreateInfo bufferCreateInfo = vks::initializers::bufferCreateInfo();
bufferCreateInfo.size = bufferSize;
// This buffer is used as a transfer source for the buffer copy
bufferCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VK_CHECK_RESULT(vkCreateBuffer(device->logicalDevice, &bufferCreateInfo, nullptr, &stagingBuffer));
// Get memory requirements for the staging buffer (alignment, memory type bits)
vkGetBufferMemoryRequirements(device->logicalDevice, stagingBuffer, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
// Get memory type index for a host visible buffer
memAllocInfo.memoryTypeIndex = device->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device->logicalDevice, &memAllocInfo, nullptr, &stagingMemory));
VK_CHECK_RESULT(vkBindBufferMemory(device->logicalDevice, stagingBuffer, stagingMemory, 0));
// Copy texture data into staging buffer
uint8_t *data;
VK_CHECK_RESULT(vkMapMemory(device->logicalDevice, stagingMemory, 0, memReqs.size, 0, (void **)&data));
memcpy(data, buffer, bufferSize);
vkUnmapMemory(device->logicalDevice, stagingMemory);
VkBufferImageCopy bufferCopyRegion = {};
bufferCopyRegion.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
bufferCopyRegion.imageSubresource.mipLevel = 0;
bufferCopyRegion.imageSubresource.baseArrayLayer = 0;
bufferCopyRegion.imageSubresource.layerCount = 1;
bufferCopyRegion.imageExtent.width = width;
bufferCopyRegion.imageExtent.height = height;
bufferCopyRegion.imageExtent.depth = 1;
bufferCopyRegion.bufferOffset = 0;
// Create optimal tiled target image
VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.mipLevels = mipLevels;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageCreateInfo.extent = { width, height, 1 };
imageCreateInfo.usage = imageUsageFlags;
// Ensure that the TRANSFER_DST bit is set for staging
if (!(imageCreateInfo.usage & VK_IMAGE_USAGE_TRANSFER_DST_BIT))
{
imageCreateInfo.usage |= VK_IMAGE_USAGE_TRANSFER_DST_BIT;
}
VK_CHECK_RESULT(vkCreateImage(device->logicalDevice, &imageCreateInfo, nullptr, &image));
vkGetImageMemoryRequirements(device->logicalDevice, image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
memAllocInfo.memoryTypeIndex = device->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device->logicalDevice, &memAllocInfo, nullptr, &deviceMemory));
VK_CHECK_RESULT(vkBindImageMemory(device->logicalDevice, image, deviceMemory, 0));
VkImageSubresourceRange subresourceRange = {};
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subresourceRange.baseMipLevel = 0;
subresourceRange.levelCount = mipLevels;
subresourceRange.layerCount = 1;
// Image barrier for optimal image (target)
// Optimal image will be used as destination for the copy
vks::tools::setImageLayout(
copyCmd,
image,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
subresourceRange);
// Copy mip levels from staging buffer
vkCmdCopyBufferToImage(
copyCmd,
stagingBuffer,
image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1,
&bufferCopyRegion
);
// Change texture image layout to shader read after all mip levels have been copied
this->imageLayout = imageLayout;
vks::tools::setImageLayout(
copyCmd,
image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
imageLayout,
subresourceRange);
device->flushCommandBuffer(copyCmd, copyQueue);
// Clean up staging resources
vkFreeMemory(device->logicalDevice, stagingMemory, nullptr);
vkDestroyBuffer(device->logicalDevice, stagingBuffer, nullptr);
// Create sampler
VkSamplerCreateInfo samplerCreateInfo = {};
samplerCreateInfo.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
samplerCreateInfo.magFilter = filter;
samplerCreateInfo.minFilter = filter;
samplerCreateInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
samplerCreateInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT;
samplerCreateInfo.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT;
samplerCreateInfo.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT;
samplerCreateInfo.mipLodBias = 0.0f;
samplerCreateInfo.compareOp = VK_COMPARE_OP_NEVER;
samplerCreateInfo.minLod = 0.0f;
samplerCreateInfo.maxLod = 0.0f;
samplerCreateInfo.maxAnisotropy = 1.0f;
VK_CHECK_RESULT(vkCreateSampler(device->logicalDevice, &samplerCreateInfo, nullptr, &sampler));
// Create image view
VkImageViewCreateInfo viewCreateInfo = {};
viewCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
viewCreateInfo.pNext = NULL;
viewCreateInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
viewCreateInfo.format = format;
viewCreateInfo.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
viewCreateInfo.subresourceRange.levelCount = 1;
viewCreateInfo.image = image;
VK_CHECK_RESULT(vkCreateImageView(device->logicalDevice, &viewCreateInfo, nullptr, &view));
// Update descriptor image info member that can be used for setting up descriptor sets
updateDescriptor();
}
/**
* Load a 2D texture array including all mip levels
*
* @param filename File to load (supports .ktx)
* @param format Vulkan format of the image data stored in the file
* @param device Vulkan device to create the texture on
* @param copyQueue Queue used for the texture staging copy commands (must support transfer)
* @param (Optional) imageUsageFlags Usage flags for the texture's image (defaults to VK_IMAGE_USAGE_SAMPLED_BIT)
* @param (Optional) imageLayout Usage layout for the texture (defaults VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL)
*
*/
void Texture2DArray::loadFromFile(std::string filename, VkFormat format, vks::VulkanDevice *device, VkQueue copyQueue, VkImageUsageFlags imageUsageFlags, VkImageLayout imageLayout)
{
ktxTexture* ktxTexture;
ktxResult result = loadKTXFile(filename, &ktxTexture);
assert(result == KTX_SUCCESS);
this->device = device;
width = ktxTexture->baseWidth;
height = ktxTexture->baseHeight;
layerCount = ktxTexture->numLayers;
mipLevels = ktxTexture->numLevels;
ktx_uint8_t *ktxTextureData = ktxTexture_GetData(ktxTexture);
ktx_size_t ktxTextureSize = ktxTexture_GetSize(ktxTexture);
VkMemoryAllocateInfo memAllocInfo = vks::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
// Create a host-visible staging buffer that contains the raw image data
VkBuffer stagingBuffer;
VkDeviceMemory stagingMemory;
VkBufferCreateInfo bufferCreateInfo = vks::initializers::bufferCreateInfo();
bufferCreateInfo.size = ktxTextureSize;
// This buffer is used as a transfer source for the buffer copy
bufferCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VK_CHECK_RESULT(vkCreateBuffer(device->logicalDevice, &bufferCreateInfo, nullptr, &stagingBuffer));
// Get memory requirements for the staging buffer (alignment, memory type bits)
vkGetBufferMemoryRequirements(device->logicalDevice, stagingBuffer, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
// Get memory type index for a host visible buffer
memAllocInfo.memoryTypeIndex = device->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device->logicalDevice, &memAllocInfo, nullptr, &stagingMemory));
VK_CHECK_RESULT(vkBindBufferMemory(device->logicalDevice, stagingBuffer, stagingMemory, 0));
// Copy texture data into staging buffer
uint8_t *data;
VK_CHECK_RESULT(vkMapMemory(device->logicalDevice, stagingMemory, 0, memReqs.size, 0, (void **)&data));
memcpy(data, ktxTextureData, ktxTextureSize);
vkUnmapMemory(device->logicalDevice, stagingMemory);
// Setup buffer copy regions for each layer including all of its miplevels
std::vector<VkBufferImageCopy> bufferCopyRegions;
for (uint32_t layer = 0; layer < layerCount; layer++)
{
for (uint32_t level = 0; level < mipLevels; level++)
{
ktx_size_t offset;
KTX_error_code result = ktxTexture_GetImageOffset(ktxTexture, level, layer, 0, &offset);
assert(result == KTX_SUCCESS);
VkBufferImageCopy bufferCopyRegion = {};
bufferCopyRegion.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
bufferCopyRegion.imageSubresource.mipLevel = level;
bufferCopyRegion.imageSubresource.baseArrayLayer = layer;
bufferCopyRegion.imageSubresource.layerCount = 1;
bufferCopyRegion.imageExtent.width = ktxTexture->baseWidth >> level;
bufferCopyRegion.imageExtent.height = ktxTexture->baseHeight >> level;
bufferCopyRegion.imageExtent.depth = 1;
bufferCopyRegion.bufferOffset = offset;
bufferCopyRegions.push_back(bufferCopyRegion);
}
}
// Create optimal tiled target image
VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageCreateInfo.extent = { width, height, 1 };
imageCreateInfo.usage = imageUsageFlags;
// Ensure that the TRANSFER_DST bit is set for staging
if (!(imageCreateInfo.usage & VK_IMAGE_USAGE_TRANSFER_DST_BIT))
{
imageCreateInfo.usage |= VK_IMAGE_USAGE_TRANSFER_DST_BIT;
}
imageCreateInfo.arrayLayers = layerCount;
imageCreateInfo.mipLevels = mipLevels;
VK_CHECK_RESULT(vkCreateImage(device->logicalDevice, &imageCreateInfo, nullptr, &image));
vkGetImageMemoryRequirements(device->logicalDevice, image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
memAllocInfo.memoryTypeIndex = device->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device->logicalDevice, &memAllocInfo, nullptr, &deviceMemory));
VK_CHECK_RESULT(vkBindImageMemory(device->logicalDevice, image, deviceMemory, 0));
// Use a separate command buffer for texture loading
VkCommandBuffer copyCmd = device->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
// Image barrier for optimal image (target)
// Set initial layout for all array layers (faces) of the optimal (target) tiled texture
VkImageSubresourceRange subresourceRange = {};
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subresourceRange.baseMipLevel = 0;
subresourceRange.levelCount = mipLevels;
subresourceRange.layerCount = layerCount;
vks::tools::setImageLayout(
copyCmd,
image,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
subresourceRange);
// Copy the layers and mip levels from the staging buffer to the optimal tiled image
vkCmdCopyBufferToImage(
copyCmd,
stagingBuffer,
image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
static_cast<uint32_t>(bufferCopyRegions.size()),
bufferCopyRegions.data());
// Change texture image layout to shader read after all faces have been copied
this->imageLayout = imageLayout;
vks::tools::setImageLayout(
copyCmd,
image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
imageLayout,
subresourceRange);
device->flushCommandBuffer(copyCmd, copyQueue);
// Create sampler
VkSamplerCreateInfo samplerCreateInfo = vks::initializers::samplerCreateInfo();
samplerCreateInfo.magFilter = VK_FILTER_LINEAR;
samplerCreateInfo.minFilter = VK_FILTER_LINEAR;
samplerCreateInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
samplerCreateInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samplerCreateInfo.addressModeV = samplerCreateInfo.addressModeU;
samplerCreateInfo.addressModeW = samplerCreateInfo.addressModeU;
samplerCreateInfo.mipLodBias = 0.0f;
samplerCreateInfo.maxAnisotropy = device->enabledFeatures.samplerAnisotropy ? device->properties.limits.maxSamplerAnisotropy : 1.0f;
samplerCreateInfo.anisotropyEnable = device->enabledFeatures.samplerAnisotropy;
samplerCreateInfo.compareOp = VK_COMPARE_OP_NEVER;
samplerCreateInfo.minLod = 0.0f;
samplerCreateInfo.maxLod = (float)mipLevels;
samplerCreateInfo.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
VK_CHECK_RESULT(vkCreateSampler(device->logicalDevice, &samplerCreateInfo, nullptr, &sampler));
// Create image view
VkImageViewCreateInfo viewCreateInfo = vks::initializers::imageViewCreateInfo();
viewCreateInfo.viewType = VK_IMAGE_VIEW_TYPE_2D_ARRAY;
viewCreateInfo.format = format;
viewCreateInfo.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
viewCreateInfo.subresourceRange.layerCount = layerCount;
viewCreateInfo.subresourceRange.levelCount = mipLevels;
viewCreateInfo.image = image;
VK_CHECK_RESULT(vkCreateImageView(device->logicalDevice, &viewCreateInfo, nullptr, &view));
// Clean up staging resources
ktxTexture_Destroy(ktxTexture);
vkFreeMemory(device->logicalDevice, stagingMemory, nullptr);
vkDestroyBuffer(device->logicalDevice, stagingBuffer, nullptr);
// Update descriptor image info member that can be used for setting up descriptor sets
updateDescriptor();
}
/**
* Load a cubemap texture including all mip levels from a single file
*
* @param filename File to load (supports .ktx)
* @param format Vulkan format of the image data stored in the file
* @param device Vulkan device to create the texture on
* @param copyQueue Queue used for the texture staging copy commands (must support transfer)
* @param (Optional) imageUsageFlags Usage flags for the texture's image (defaults to VK_IMAGE_USAGE_SAMPLED_BIT)
* @param (Optional) imageLayout Usage layout for the texture (defaults VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL)
*
*/
void TextureCubeMap::loadFromFile(std::string filename, VkFormat format, vks::VulkanDevice *device, VkQueue copyQueue, VkImageUsageFlags imageUsageFlags, VkImageLayout imageLayout)
{
ktxTexture* ktxTexture;
ktxResult result = loadKTXFile(filename, &ktxTexture);
assert(result == KTX_SUCCESS);
this->device = device;
width = ktxTexture->baseWidth;
height = ktxTexture->baseHeight;
mipLevels = ktxTexture->numLevels;
ktx_uint8_t *ktxTextureData = ktxTexture_GetData(ktxTexture);
ktx_size_t ktxTextureSize = ktxTexture_GetSize(ktxTexture);
VkMemoryAllocateInfo memAllocInfo = vks::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
// Create a host-visible staging buffer that contains the raw image data
VkBuffer stagingBuffer;
VkDeviceMemory stagingMemory;
VkBufferCreateInfo bufferCreateInfo = vks::initializers::bufferCreateInfo();
bufferCreateInfo.size = ktxTextureSize;
// This buffer is used as a transfer source for the buffer copy
bufferCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VK_CHECK_RESULT(vkCreateBuffer(device->logicalDevice, &bufferCreateInfo, nullptr, &stagingBuffer));
// Get memory requirements for the staging buffer (alignment, memory type bits)
vkGetBufferMemoryRequirements(device->logicalDevice, stagingBuffer, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
// Get memory type index for a host visible buffer
memAllocInfo.memoryTypeIndex = device->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device->logicalDevice, &memAllocInfo, nullptr, &stagingMemory));
VK_CHECK_RESULT(vkBindBufferMemory(device->logicalDevice, stagingBuffer, stagingMemory, 0));
// Copy texture data into staging buffer
uint8_t *data;
VK_CHECK_RESULT(vkMapMemory(device->logicalDevice, stagingMemory, 0, memReqs.size, 0, (void **)&data));
memcpy(data, ktxTextureData, ktxTextureSize);
vkUnmapMemory(device->logicalDevice, stagingMemory);
// Setup buffer copy regions for each face including all of its mip levels
std::vector<VkBufferImageCopy> bufferCopyRegions;
for (uint32_t face = 0; face < 6; face++)
{
for (uint32_t level = 0; level < mipLevels; level++)
{
ktx_size_t offset;
KTX_error_code result = ktxTexture_GetImageOffset(ktxTexture, level, 0, face, &offset);
assert(result == KTX_SUCCESS);
VkBufferImageCopy bufferCopyRegion = {};
bufferCopyRegion.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
bufferCopyRegion.imageSubresource.mipLevel = level;
bufferCopyRegion.imageSubresource.baseArrayLayer = face;
bufferCopyRegion.imageSubresource.layerCount = 1;
bufferCopyRegion.imageExtent.width = ktxTexture->baseWidth >> level;
bufferCopyRegion.imageExtent.height = ktxTexture->baseHeight >> level;
bufferCopyRegion.imageExtent.depth = 1;
bufferCopyRegion.bufferOffset = offset;
bufferCopyRegions.push_back(bufferCopyRegion);
}
}
// Create optimal tiled target image
VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.mipLevels = mipLevels;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageCreateInfo.extent = { width, height, 1 };
imageCreateInfo.usage = imageUsageFlags;
// Ensure that the TRANSFER_DST bit is set for staging
if (!(imageCreateInfo.usage & VK_IMAGE_USAGE_TRANSFER_DST_BIT))
{
imageCreateInfo.usage |= VK_IMAGE_USAGE_TRANSFER_DST_BIT;
}
// Cube faces count as array layers in Vulkan
imageCreateInfo.arrayLayers = 6;
// This flag is required for cube map images
imageCreateInfo.flags = VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
VK_CHECK_RESULT(vkCreateImage(device->logicalDevice, &imageCreateInfo, nullptr, &image));
vkGetImageMemoryRequirements(device->logicalDevice, image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
memAllocInfo.memoryTypeIndex = device->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device->logicalDevice, &memAllocInfo, nullptr, &deviceMemory));
VK_CHECK_RESULT(vkBindImageMemory(device->logicalDevice, image, deviceMemory, 0));
// Use a separate command buffer for texture loading
VkCommandBuffer copyCmd = device->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
// Image barrier for optimal image (target)
// Set initial layout for all array layers (faces) of the optimal (target) tiled texture
VkImageSubresourceRange subresourceRange = {};
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subresourceRange.baseMipLevel = 0;
subresourceRange.levelCount = mipLevels;
subresourceRange.layerCount = 6;
vks::tools::setImageLayout(
copyCmd,
image,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
subresourceRange);
// Copy the cube map faces from the staging buffer to the optimal tiled image
vkCmdCopyBufferToImage(
copyCmd,
stagingBuffer,
image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
static_cast<uint32_t>(bufferCopyRegions.size()),
bufferCopyRegions.data());
// Change texture image layout to shader read after all faces have been copied
this->imageLayout = imageLayout;
vks::tools::setImageLayout(
copyCmd,
image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
imageLayout,
subresourceRange);
device->flushCommandBuffer(copyCmd, copyQueue);
// Create sampler
VkSamplerCreateInfo samplerCreateInfo = vks::initializers::samplerCreateInfo();
samplerCreateInfo.magFilter = VK_FILTER_LINEAR;
samplerCreateInfo.minFilter = VK_FILTER_LINEAR;
samplerCreateInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
samplerCreateInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samplerCreateInfo.addressModeV = samplerCreateInfo.addressModeU;
samplerCreateInfo.addressModeW = samplerCreateInfo.addressModeU;
samplerCreateInfo.mipLodBias = 0.0f;
samplerCreateInfo.maxAnisotropy = device->enabledFeatures.samplerAnisotropy ? device->properties.limits.maxSamplerAnisotropy : 1.0f;
samplerCreateInfo.anisotropyEnable = device->enabledFeatures.samplerAnisotropy;
samplerCreateInfo.compareOp = VK_COMPARE_OP_NEVER;
samplerCreateInfo.minLod = 0.0f;
samplerCreateInfo.maxLod = (float)mipLevels;
samplerCreateInfo.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
VK_CHECK_RESULT(vkCreateSampler(device->logicalDevice, &samplerCreateInfo, nullptr, &sampler));
// Create image view
VkImageViewCreateInfo viewCreateInfo = vks::initializers::imageViewCreateInfo();
viewCreateInfo.viewType = VK_IMAGE_VIEW_TYPE_CUBE;
viewCreateInfo.format = format;
viewCreateInfo.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
viewCreateInfo.subresourceRange.layerCount = 6;
viewCreateInfo.subresourceRange.levelCount = mipLevels;
viewCreateInfo.image = image;
VK_CHECK_RESULT(vkCreateImageView(device->logicalDevice, &viewCreateInfo, nullptr, &view));
// Clean up staging resources
ktxTexture_Destroy(ktxTexture);
vkFreeMemory(device->logicalDevice, stagingMemory, nullptr);
vkDestroyBuffer(device->logicalDevice, stagingBuffer, nullptr);
// Update descriptor image info member that can be used for setting up descriptor sets
updateDescriptor();
}
}