2223 lines
102 KiB
C++
2223 lines
102 KiB
C++
/*
|
|
* Vulkan Example - glTF scene loading and rendering
|
|
*
|
|
* Copyright (C) 2020-2022 by Sascha Willems - www.saschawillems.de
|
|
*
|
|
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
|
|
*/
|
|
|
|
/*
|
|
* Shows how to load and display a simple scene from a glTF file
|
|
* Note that this isn't a complete glTF loader and only basic functions are shown here
|
|
* This means no complex materials, no animations, no skins, etc.
|
|
* For details on how glTF 2.0 works, see the official spec at https://github.com/KhronosGroup/glTF/tree/master/specification/2.0
|
|
*
|
|
* Other samples will load models using a dedicated model loader with more features (see base/VulkanglTFModel.hpp)
|
|
*
|
|
* If you are looking for a complete glTF implementation, check out https://github.com/SaschaWillems/Vulkan-glTF-PBR/
|
|
*/
|
|
|
|
|
|
#include "homework1.h"
|
|
|
|
|
|
|
|
/*
|
|
glTF loading functions
|
|
|
|
The following functions take a glTF input model loaded via tinyglTF and convert all required data into our own structure
|
|
*/
|
|
|
|
void VulkanglTFModel::loadImages(tinygltf::Model& input)
|
|
{
|
|
images.resize(input.images.size());
|
|
for (size_t i = 0; i < input.images.size(); i++) {
|
|
tinygltf::Image& glTFImage = input.images[i];
|
|
// Get the image data from the glTF loader
|
|
unsigned char* buffer = nullptr;
|
|
VkDeviceSize bufferSize = 0;
|
|
bool deleteBuffer = false;
|
|
// We convert RGB-only images to RGBA, as most devices don't support RGB-formats in Vulkan
|
|
if (glTFImage.component == 3) {
|
|
bufferSize = glTFImage.width * glTFImage.height * 4;
|
|
buffer = new unsigned char[bufferSize];
|
|
unsigned char* rgba = buffer;
|
|
unsigned char* rgb = &glTFImage.image[0];
|
|
for (size_t i = 0; i < glTFImage.width * glTFImage.height; ++i) {
|
|
memcpy(rgba, rgb, sizeof(unsigned char) * 3);
|
|
rgba += 4;
|
|
rgb += 3;
|
|
}
|
|
deleteBuffer = true;
|
|
}
|
|
else {
|
|
buffer = &glTFImage.image[0];
|
|
bufferSize = glTFImage.image.size();
|
|
}
|
|
// Load texture from image buffer
|
|
images[i].texture.fromBuffer(buffer, bufferSize, VK_FORMAT_R8G8B8A8_UNORM, glTFImage.width, glTFImage.height, vulkanDevice, copyQueue);
|
|
if (deleteBuffer) {
|
|
delete[] buffer;
|
|
}
|
|
}
|
|
}
|
|
|
|
void VulkanglTFModel::loadTextures(tinygltf::Model& input)
|
|
{
|
|
textures.resize(input.textures.size());
|
|
for (size_t i = 0; i < input.textures.size(); i++) {
|
|
textures[i].imageIndex = input.textures[i].source;
|
|
}
|
|
}
|
|
|
|
void VulkanglTFModel::loadMaterials(tinygltf::Model& input)
|
|
{
|
|
materials.resize(input.materials.size());
|
|
for (size_t i = 0; i < input.materials.size(); i++) {
|
|
// We only read the most basic properties required for our sample
|
|
tinygltf::Material glTFMaterial = input.materials[i];
|
|
// Get the base color factor
|
|
if (glTFMaterial.values.find("baseColorFactor") != glTFMaterial.values.end()) {
|
|
materials[i].baseColorFactor = glm::make_vec4(glTFMaterial.values["baseColorFactor"].ColorFactor().data());
|
|
}
|
|
// Get base color texture index
|
|
if (glTFMaterial.values.find("baseColorTexture") != glTFMaterial.values.end()) {
|
|
materials[i].baseColorTextureIndex = glTFMaterial.values["baseColorTexture"].TextureIndex();
|
|
}
|
|
if (glTFMaterial.values.find("metallicRoughnessTexture") != glTFMaterial.values.end()) {
|
|
materials[i].matalicRoughTextureIndex = glTFMaterial.values["metallicRoughnessTexture"].TextureIndex();
|
|
}
|
|
if (glTFMaterial.additionalValues.find("normalTexture") != glTFMaterial.additionalValues.end())
|
|
{
|
|
materials[i].normalMapTextureIndex = glTFMaterial.additionalValues["normalTexture"].TextureIndex();
|
|
}
|
|
if (glTFMaterial.emissiveTexture.index != -1)
|
|
{
|
|
materials[i].emissiveTextureIndex = glTFMaterial.emissiveTexture.index;
|
|
}
|
|
if (glTFMaterial.emissiveFactor.size() == 3)
|
|
{
|
|
materials[i].materialData.values.emissiveFactor = glm::make_vec3(glTFMaterial.emissiveFactor.data());
|
|
}
|
|
|
|
if (glTFMaterial.values.find("baseColorFactor") != glTFMaterial.values.end())
|
|
{
|
|
materials[i].materialData.values.baseColorFactor = glm::make_vec4(glTFMaterial.values["baseColorFactor"].ColorFactor().data());
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
//animation loader
|
|
void VulkanglTFModel::loadAnimations(tinygltf::Model& input)
|
|
{
|
|
animations.resize(input.animations.size());
|
|
|
|
for (size_t i = 0; i < input.animations.size(); i++)
|
|
{
|
|
tinygltf::Animation glTFAnimation = input.animations[i];
|
|
animations[i].name = glTFAnimation.name;
|
|
|
|
// Samplers
|
|
animations[i].samplers.resize(glTFAnimation.samplers.size());
|
|
for (size_t j = 0; j < glTFAnimation.samplers.size(); j++)
|
|
{
|
|
tinygltf::AnimationSampler glTFSampler = glTFAnimation.samplers[j];
|
|
AnimationSampler& dstSampler = animations[i].samplers[j];
|
|
dstSampler.interpolation = glTFSampler.interpolation;
|
|
|
|
// Read sampler keyframe input time values
|
|
{
|
|
const tinygltf::Accessor& accessor = input.accessors[glTFSampler.input];
|
|
const tinygltf::BufferView& bufferView = input.bufferViews[accessor.bufferView];
|
|
const tinygltf::Buffer& buffer = input.buffers[bufferView.buffer];
|
|
const void* dataPtr = &buffer.data[accessor.byteOffset + bufferView.byteOffset];
|
|
const float* buf = static_cast<const float*>(dataPtr);
|
|
for (size_t index = 0; index < accessor.count; index++)
|
|
{
|
|
dstSampler.inputs.push_back(buf[index]);
|
|
}
|
|
// Adjust animation's start and end times
|
|
for (auto input : animations[i].samplers[j].inputs)
|
|
{
|
|
if (input < animations[i].start)
|
|
{
|
|
animations[i].start = input;
|
|
};
|
|
if (input > animations[i].end)
|
|
{
|
|
animations[i].end = input;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Read sampler keyframe output translate/rotate/scale values
|
|
{
|
|
const tinygltf::Accessor& accessor = input.accessors[glTFSampler.output];
|
|
const tinygltf::BufferView& bufferView = input.bufferViews[accessor.bufferView];
|
|
const tinygltf::Buffer& buffer = input.buffers[bufferView.buffer];
|
|
const void* dataPtr = &buffer.data[accessor.byteOffset + bufferView.byteOffset];
|
|
switch (accessor.type)
|
|
{
|
|
case TINYGLTF_TYPE_VEC3: {
|
|
const glm::vec3* buf = static_cast<const glm::vec3*>(dataPtr);
|
|
for (size_t index = 0; index < accessor.count; index++)
|
|
{
|
|
dstSampler.outputsVec4.push_back(glm::vec4(buf[index], 0.0f));
|
|
}
|
|
break;
|
|
}
|
|
case TINYGLTF_TYPE_VEC4: {
|
|
const glm::vec4* buf = static_cast<const glm::vec4*>(dataPtr);
|
|
for (size_t index = 0; index < accessor.count; index++)
|
|
{
|
|
dstSampler.outputsVec4.push_back(buf[index]);
|
|
}
|
|
break;
|
|
}
|
|
default: {
|
|
std::cout << "unknown type" << std::endl;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Channels
|
|
animations[i].channels.resize(glTFAnimation.channels.size());
|
|
for (size_t j = 0; j < glTFAnimation.channels.size(); j++)
|
|
{
|
|
tinygltf::AnimationChannel glTFChannel = glTFAnimation.channels[j];
|
|
AnimationChannel& dstChannel = animations[i].channels[j];
|
|
dstChannel.path = glTFChannel.target_path;
|
|
dstChannel.samplerIndex = glTFChannel.sampler;
|
|
dstChannel.node = nodeFromIndex(glTFChannel.target_node);
|
|
}
|
|
}
|
|
|
|
|
|
}
|
|
/*
|
|
// load skins from glTF model
|
|
void VulkanglTFModel::loadSkins(tinygltf::Model& input)
|
|
{
|
|
|
|
skins.resize(input.skins.size());
|
|
if (skins.size() > 0)
|
|
{
|
|
for (size_t i = 0; i < input.skins.size(); i++)
|
|
{
|
|
tinygltf::Skin glTFSkin = input.skins[i];
|
|
|
|
skins[i].name = glTFSkin.name;
|
|
//follow the tree structure,find the root node of skeleton by index
|
|
skins[i].skeletonRoot = nodeFromIndex(glTFSkin.skeleton);
|
|
|
|
//join nodes
|
|
for (int jointIndex : glTFSkin.joints)
|
|
{
|
|
Node* node = nodeFromIndex(jointIndex);
|
|
if (node)
|
|
{
|
|
skins[i].joints.push_back(node);
|
|
}
|
|
}
|
|
//get the inverse bind matrices
|
|
if (glTFSkin.inverseBindMatrices > -1)
|
|
{
|
|
const tinygltf::Accessor& accessor = input.accessors[glTFSkin.inverseBindMatrices];
|
|
const tinygltf::BufferView& bufferview = input.bufferViews[accessor.bufferView];
|
|
const tinygltf::Buffer& buffer = input.buffers[bufferview.buffer];
|
|
skins[i].inverseBindMatrices.resize(accessor.count);
|
|
memcpy(skins[i].inverseBindMatrices.data(), &buffer.data[accessor.byteOffset + bufferview.byteOffset], accessor.count * sizeof(glm::mat4));
|
|
|
|
//create a host visible shader buffer to store inverse bind matrices for this skin
|
|
VK_CHECK_RESULT(
|
|
vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_STORAGE_BUFFER_BIT,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
|
&skins[i].ssbo,
|
|
sizeof(glm::mat4) * skins[i].inverseBindMatrices.size(),
|
|
skins[i].inverseBindMatrices.data()));
|
|
VK_CHECK_RESULT(skins[i].ssbo.map());
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
}*/
|
|
|
|
//glTF nodes loading helper function
|
|
//rewrite node loader,simplify logic
|
|
//Search node from parent to children by index
|
|
VulkanglTFModel::Node* VulkanglTFModel::findNode(Node* parent, uint32_t index)
|
|
{
|
|
Node* nodeFound = nullptr;
|
|
if (parent->index == index)
|
|
{
|
|
return parent;
|
|
}
|
|
for (auto& child : parent->children)
|
|
{
|
|
nodeFound = findNode(child, index);
|
|
if (nodeFound)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
return nodeFound;
|
|
} //iterate vector of nodes to check weather nodes exist or not
|
|
VulkanglTFModel::Node* VulkanglTFModel::nodeFromIndex(uint32_t index)
|
|
{
|
|
Node* nodeFound = nullptr;
|
|
for (auto& node : nodes)
|
|
{
|
|
nodeFound = findNode(node, index);
|
|
if (nodeFound)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
return nodeFound;
|
|
}
|
|
|
|
|
|
//node loader
|
|
void VulkanglTFModel::loadNode(const tinygltf::Node& inputNode, const tinygltf::Model& input, VulkanglTFModel::Node* parent, uint32_t nodeIndex, std::vector<uint32_t>& indexBuffer, std::vector<VulkanglTFModel::Vertex>& vertexBuffer)
|
|
{
|
|
VulkanglTFModel::Node* node = new VulkanglTFModel::Node{};
|
|
node->matrix = glm::mat4(1.0f);
|
|
node->parent = parent;
|
|
node->index = nodeIndex;
|
|
|
|
// Get the local node matrix
|
|
// It's either made up from translation, rotation, scale or a 4x4 matrix
|
|
if (inputNode.translation.size() == 3) {
|
|
node->matrix = glm::translate(node->matrix, glm::vec3(glm::make_vec3(inputNode.translation.data())));
|
|
}
|
|
if (inputNode.rotation.size() == 4) {
|
|
glm::quat q = glm::make_quat(inputNode.rotation.data());
|
|
node->matrix *= glm::mat4(q);
|
|
}
|
|
if (inputNode.scale.size() == 3) {
|
|
node->matrix = glm::scale(node->matrix, glm::vec3(glm::make_vec3(inputNode.scale.data())));
|
|
}
|
|
if (inputNode.matrix.size() == 16) {
|
|
node->matrix = glm::make_mat4x4(inputNode.matrix.data());
|
|
};
|
|
|
|
// Load node's children
|
|
if (inputNode.children.size() > 0) {
|
|
for (size_t i = 0; i < inputNode.children.size(); i++) {
|
|
loadNode(input.nodes[inputNode.children[i]], input, node, inputNode.children[i], indexBuffer, vertexBuffer);
|
|
}
|
|
}
|
|
|
|
// If the node contains mesh data, we load vertices and indices from the buffers
|
|
// In glTF this is done via accessors and buffer views
|
|
if (inputNode.mesh > -1) {
|
|
const tinygltf::Mesh mesh = input.meshes[inputNode.mesh];
|
|
// Iterate through all primitives of this node's mesh
|
|
for (size_t i = 0; i < mesh.primitives.size(); i++) {
|
|
const tinygltf::Primitive& glTFPrimitive = mesh.primitives[i];
|
|
uint32_t firstIndex = static_cast<uint32_t>(indexBuffer.size());
|
|
uint32_t vertexStart = static_cast<uint32_t>(vertexBuffer.size());
|
|
uint32_t indexCount = 0;
|
|
// Vertices
|
|
{
|
|
const float* positionBuffer = nullptr;
|
|
const float* normalsBuffer = nullptr;
|
|
const float* texCoordsBuffer = nullptr;
|
|
const float* tangentsBuffer = nullptr;
|
|
size_t vertexCount = 0;
|
|
|
|
// Get buffer data for vertex positions
|
|
if (glTFPrimitive.attributes.find("POSITION") != glTFPrimitive.attributes.end()) {
|
|
const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.attributes.find("POSITION")->second];
|
|
const tinygltf::BufferView& view = input.bufferViews[accessor.bufferView];
|
|
positionBuffer = reinterpret_cast<const float*>(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset]));
|
|
vertexCount = accessor.count;
|
|
}
|
|
// Get buffer data for vertex normals
|
|
if (glTFPrimitive.attributes.find("NORMAL") != glTFPrimitive.attributes.end()) {
|
|
const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.attributes.find("NORMAL")->second];
|
|
const tinygltf::BufferView& view = input.bufferViews[accessor.bufferView];
|
|
normalsBuffer = reinterpret_cast<const float*>(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset]));
|
|
}
|
|
// Get buffer data for vertex texture coordinates
|
|
// glTF supports multiple sets, we only load the first one
|
|
if (glTFPrimitive.attributes.find("TEXCOORD_0") != glTFPrimitive.attributes.end()) {
|
|
const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.attributes.find("TEXCOORD_0")->second];
|
|
const tinygltf::BufferView& view = input.bufferViews[accessor.bufferView];
|
|
texCoordsBuffer = reinterpret_cast<const float*>(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset]));
|
|
}
|
|
|
|
if (glTFPrimitive.attributes.find("TANGENT") != glTFPrimitive.attributes.end())
|
|
{
|
|
const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.attributes.find("TANGENT")->second];
|
|
const tinygltf::BufferView& view = input.bufferViews[accessor.bufferView];
|
|
tangentsBuffer = reinterpret_cast<const float*>(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset]));
|
|
}
|
|
|
|
// Append data to model's vertex buffer
|
|
for (size_t v = 0; v < vertexCount; v++) {
|
|
Vertex vert{};
|
|
vert.pos = glm::vec4(glm::make_vec3(&positionBuffer[v * 3]), 1.0f);
|
|
vert.normal = glm::normalize(glm::vec3(normalsBuffer ? glm::make_vec3(&normalsBuffer[v * 3]) : glm::vec3(0.0f)));
|
|
vert.uv = texCoordsBuffer ? glm::make_vec2(&texCoordsBuffer[v * 2]) : glm::vec3(0.0f);
|
|
vert.tangent = tangentsBuffer ? glm::normalize(glm::make_vec3(&tangentsBuffer[v * 4])) : glm::vec3(0.0f);
|
|
vert.color = glm::vec3(1.0f, 1.0f, nodeIndex);//Temp set index in color attribute
|
|
vertexBuffer.push_back(vert);
|
|
}
|
|
}
|
|
// Indices
|
|
{
|
|
const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.indices];
|
|
const tinygltf::BufferView& bufferView = input.bufferViews[accessor.bufferView];
|
|
const tinygltf::Buffer& buffer = input.buffers[bufferView.buffer];
|
|
|
|
indexCount += static_cast<uint32_t>(accessor.count);
|
|
|
|
// glTF supports different component types of indices
|
|
switch (accessor.componentType) {
|
|
case TINYGLTF_PARAMETER_TYPE_UNSIGNED_INT: {
|
|
const uint32_t* buf = reinterpret_cast<const uint32_t*>(&buffer.data[accessor.byteOffset + bufferView.byteOffset]);
|
|
for (size_t index = 0; index < accessor.count; index++) {
|
|
indexBuffer.push_back(buf[index] + vertexStart);
|
|
}
|
|
break;
|
|
}
|
|
case TINYGLTF_PARAMETER_TYPE_UNSIGNED_SHORT: {
|
|
const uint16_t* buf = reinterpret_cast<const uint16_t*>(&buffer.data[accessor.byteOffset + bufferView.byteOffset]);
|
|
for (size_t index = 0; index < accessor.count; index++) {
|
|
indexBuffer.push_back(buf[index] + vertexStart);
|
|
}
|
|
break;
|
|
}
|
|
case TINYGLTF_PARAMETER_TYPE_UNSIGNED_BYTE: {
|
|
const uint8_t* buf = reinterpret_cast<const uint8_t*>(&buffer.data[accessor.byteOffset + bufferView.byteOffset]);
|
|
for (size_t index = 0; index < accessor.count; index++) {
|
|
indexBuffer.push_back(buf[index] + vertexStart);
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
std::cerr << "Index component type " << accessor.componentType << " not supported!" << std::endl;
|
|
return;
|
|
}
|
|
}
|
|
Primitive primitive{};
|
|
primitive.firstIndex = firstIndex;
|
|
primitive.indexCount = indexCount;
|
|
primitive.materialIndex = glTFPrimitive.material;
|
|
node->mesh.primitives.push_back(primitive);
|
|
}
|
|
}
|
|
|
|
if (parent) {
|
|
parent->children.push_back(node);
|
|
}
|
|
else {
|
|
nodes.push_back(node);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
vertex skinning functions
|
|
*/
|
|
glm::mat4 VulkanglTFModel::getNodeMatrix(VulkanglTFModel::Node* node)
|
|
{
|
|
glm::mat4 nodeMatrix = node->getLocalMatrix();
|
|
VulkanglTFModel::Node* currentParent = node->parent;
|
|
while (currentParent)
|
|
{
|
|
nodeMatrix = currentParent->getLocalMatrix() * nodeMatrix;
|
|
currentParent = currentParent->parent;
|
|
}
|
|
return nodeMatrix;
|
|
}
|
|
|
|
void VulkanglTFModel::updateNodeMatrix(Node* node, std::vector<glm::mat4>& nodeMatrics)
|
|
{
|
|
if (node->skin <= -1)
|
|
{
|
|
nodeMatrics[node->index] = getNodeMatrix(node);
|
|
for (auto& child : node->children)
|
|
{
|
|
updateNodeMatrix(child, nodeMatrics);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
void VulkanglTFModel::updateJoints(VulkanglTFModel::Node* node)
|
|
{
|
|
if (node->skin > -1)
|
|
{
|
|
glm::mat4 inversTransform = glm::inverse(getNodeMatrix(node));
|
|
Skin skin = skins[node->skin];
|
|
size_t numJoints = (uint32_t)skin.joints.size();
|
|
std::vector<glm::mat4> jointMatrices(numJoints);
|
|
for (size_t i = 0; i < numJoints; i++)
|
|
{
|
|
jointMatrices[i] = getNodeMatrix(skin.joints[i]) * skin.inverseBindMatrices[i];
|
|
jointMatrices[i] = inversTransform * jointMatrices[i];
|
|
}
|
|
skin.ssbo.copyTo(jointMatrices.data(), jointMatrices.size() * sizeof(glm::mat4));
|
|
}
|
|
for (auto& child : node->children)
|
|
{
|
|
updateJoints(child);
|
|
}
|
|
}
|
|
|
|
void VulkanglTFModel::updateAnimation(float deltaTime,vks::Buffer buffer)
|
|
{
|
|
if (activeAnimation > static_cast<uint32_t>(animations.size()) - 1)
|
|
{
|
|
std::cout << "No animation with index " << activeAnimation << std::endl;
|
|
return;
|
|
}
|
|
Animation& animation = animations[activeAnimation];
|
|
animation.currentTime += deltaTime;
|
|
if (animation.currentTime > animation.end)
|
|
{
|
|
animation.currentTime -= animation.end;
|
|
}
|
|
|
|
for (auto& channel : animation.channels)
|
|
{
|
|
AnimationSampler& sampler = animation.samplers[channel.samplerIndex];
|
|
for (size_t i = 0; i < sampler.inputs.size() - 1; ++i)
|
|
{
|
|
if (sampler.interpolation != "LINEAR")
|
|
{
|
|
std::cout << "This sample only supports linear interpolations\n";
|
|
continue;
|
|
}
|
|
|
|
// Get the input keyframe values for the current time stamp
|
|
if ((animation.currentTime >= sampler.inputs[i]) && (animation.currentTime <= sampler.inputs[i + 1]))
|
|
{
|
|
float ratio = (animation.currentTime - sampler.inputs[i]) / (sampler.inputs[i + 1] - sampler.inputs[i]);
|
|
if (channel.path == "translation")
|
|
{
|
|
channel.node->translation = glm::mix(sampler.outputsVec4[i], sampler.outputsVec4[i + 1], ratio);
|
|
channel.node->bAnimateNode = true;
|
|
}
|
|
if (channel.path == "rotation")
|
|
{
|
|
glm::quat q1;
|
|
q1.x = sampler.outputsVec4[i].x;
|
|
q1.y = sampler.outputsVec4[i].y;
|
|
q1.z = sampler.outputsVec4[i].z;
|
|
q1.w = sampler.outputsVec4[i].w;
|
|
|
|
glm::quat q2;
|
|
q2.x = sampler.outputsVec4[i + 1].x;
|
|
q2.y = sampler.outputsVec4[i + 1].y;
|
|
q2.z = sampler.outputsVec4[i + 1].z;
|
|
q2.w = sampler.outputsVec4[i + 1].w;
|
|
|
|
channel.node->rotation = glm::normalize(glm::slerp(q1, q2, ratio));
|
|
channel.node->bAnimateNode = true;
|
|
}
|
|
if (channel.path == "scale")
|
|
{
|
|
channel.node->scale = glm::mix(sampler.outputsVec4[i], sampler.outputsVec4[i + 1], ratio);
|
|
channel.node->bAnimateNode = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
//if no skin in model , update node matrix to update animation stage
|
|
std::vector<glm::mat4> nodeMatrics(nodeCount);
|
|
for (auto& node : nodes)
|
|
{
|
|
//updateJoints(node);
|
|
updateNodeMatrix(node, nodeMatrics);
|
|
}
|
|
buffer.copyTo(nodeMatrics.data(), nodeCount * sizeof(glm::mat4));
|
|
|
|
}
|
|
/*
|
|
glTF rendering functions
|
|
*/
|
|
|
|
// Draw a single node including child nodes (if present)
|
|
void VulkanglTFModel::drawNode(VkCommandBuffer commandBuffer, VkPipelineLayout pipelineLayout, VulkanglTFModel::Node node)
|
|
{
|
|
if (node.mesh.primitives.size() > 0) {
|
|
// Pass the node's matrix via push constants
|
|
// Traverse the node hierarchy to the top-most parent to get the final matrix of the current node
|
|
glm::mat4 nodeMatrix = node.matrix;
|
|
VulkanglTFModel::Node* currentParent = node.parent;
|
|
while (currentParent) {
|
|
nodeMatrix = currentParent->matrix * nodeMatrix;
|
|
currentParent = currentParent->parent;
|
|
}
|
|
|
|
for (VulkanglTFModel::Primitive& primitive : node.mesh.primitives) {
|
|
if (primitive.indexCount > 0) {
|
|
// Get the texture index for this primitive
|
|
if (textures.size() > 0)
|
|
{
|
|
VulkanglTFModel::Texture texture = textures[materials[primitive.materialIndex].baseColorTextureIndex];
|
|
VulkanglTFModel::Texture normalMap = textures[materials[primitive.materialIndex].normalMapTextureIndex];
|
|
VulkanglTFModel::Texture roughMetalMap = textures[materials[primitive.materialIndex].matalicRoughTextureIndex];
|
|
|
|
if (materials[primitive.materialIndex].emissiveTextureIndex >= 0)
|
|
{
|
|
VulkanglTFModel::Texture emissiveMap = textures[materials[primitive.materialIndex].emissiveTextureIndex];
|
|
vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 4, 1, &images[emissiveMap.imageIndex].descriptorSet, 0, nullptr);
|
|
}
|
|
|
|
// Bind the descriptor for the current primitive's texture
|
|
vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 1, 1, &images[texture.imageIndex].descriptorSet, 0, nullptr);
|
|
vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 2, 1, &images[normalMap.imageIndex].descriptorSet, 0, nullptr);
|
|
vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 3, 1, &images[roughMetalMap.imageIndex].descriptorSet, 0, nullptr);
|
|
vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 5, 1, &materials[primitive.materialIndex].materialData.descriptorSet, 0, nullptr);
|
|
}
|
|
vkCmdDrawIndexed(commandBuffer, primitive.indexCount, 1, primitive.firstIndex, 0, 0);
|
|
}
|
|
}
|
|
}
|
|
for (auto &child : node.children) {
|
|
drawNode(commandBuffer, pipelineLayout, *child);
|
|
}
|
|
}
|
|
|
|
// Draw the glTF scene starting at the top-level-nodes
|
|
void VulkanglTFModel::draw(VkCommandBuffer commandBuffer, VkPipelineLayout pipelineLayout )
|
|
{
|
|
// All vertices and indices are stored in single buffers, so we only need to bind once
|
|
VkDeviceSize offsets[1] = { 0 };
|
|
vkCmdBindVertexBuffers(commandBuffer, 0, 1, &vertices.buffer, offsets);
|
|
vkCmdBindIndexBuffer(commandBuffer, indices.buffer, 0, VK_INDEX_TYPE_UINT32);
|
|
// Render all nodes at top-level
|
|
for (auto& node : nodes) {
|
|
drawNode(commandBuffer, pipelineLayout, *node);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
VulkanExample::VulkanExample():
|
|
VulkanExampleBase(ENABLE_VALIDATION)
|
|
{
|
|
title = "homework1";
|
|
camera.type = Camera::CameraType::lookat;
|
|
camera.flipY = true;
|
|
camera.setPosition(glm::vec3(0.0f, -0.1f, -1.0f));
|
|
camera.setRotation(glm::vec3(0.0f, 45.0f, 0.0f));
|
|
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f);
|
|
}
|
|
|
|
void VulkanExample::setupFrameBuffer()
|
|
{
|
|
VulkanExampleBase::setupFrameBuffer();
|
|
if (pbrFrameBuffer.bCreate && (pbrFrameBuffer.fbo.width != width || pbrFrameBuffer.fbo.height != height))
|
|
{
|
|
pbrFrameBuffer.color.destroy(device);
|
|
pbrFrameBuffer.depth.destroy(device);
|
|
pbrFrameBuffer.fbo.destroy(device);
|
|
vkDestroySampler(device, colorSampler, nullptr);
|
|
}
|
|
|
|
pbrFrameBuffer.fbo.setSize(width, height);
|
|
VkFormat attachDepthFormat;
|
|
VkBool32 validDepthFormat = vks::tools::getSupportedDepthFormat(physicalDevice, &attachDepthFormat);
|
|
assert(validDepthFormat);
|
|
|
|
VulkanExample::createAttachment(VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, &pbrFrameBuffer.color, width, height);
|
|
VulkanExample::createAttachment(attachDepthFormat, VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, &pbrFrameBuffer.depth, width, height);
|
|
|
|
|
|
std::array<VkAttachmentDescription, 2> attachs = {};
|
|
for (uint32_t i = 0; i < static_cast<uint32_t>(attachs.size()); i++)
|
|
{
|
|
attachs[i].samples = VK_SAMPLE_COUNT_1_BIT;
|
|
attachs[i].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
|
|
attachs[i].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
|
|
attachs[i].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
|
|
attachs[i].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
|
|
attachs[i].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
|
|
attachs[i].finalLayout = 1 ? VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL : VK_IMAGE_LAYOUT_READ_ONLY_OPTIMAL;
|
|
}
|
|
attachs[0].format = pbrFrameBuffer.color.format;
|
|
attachs[1].format = pbrFrameBuffer.depth.format;
|
|
|
|
|
|
VkAttachmentReference colorRefference = {};
|
|
colorRefference.attachment = 0;
|
|
colorRefference.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
|
|
|
|
VkAttachmentReference depthRefference = {};
|
|
colorRefference.attachment = 1;
|
|
colorRefference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
|
|
|
|
VkSubpassDescription subpass = {};
|
|
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
|
|
subpass.pColorAttachments = &colorRefference;
|
|
subpass.colorAttachmentCount = 1;
|
|
subpass.pDepthStencilAttachment = &depthRefference;
|
|
|
|
std::array<VkSubpassDependency, 2> dependencies;
|
|
//To test src 0
|
|
dependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL;
|
|
dependencies[0].dstSubpass = 0;
|
|
dependencies[0].srcStageMask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
|
|
dependencies[0].dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
|
|
dependencies[0].srcAccessMask = VK_ACCESS_SHADER_READ_BIT;
|
|
dependencies[0].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
|
|
dependencies[0].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
|
|
|
|
dependencies[1].srcSubpass = 0;
|
|
dependencies[1].dstSubpass = VK_SUBPASS_EXTERNAL;
|
|
dependencies[1].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
|
|
dependencies[1].dstStageMask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
|
|
dependencies[1].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
|
|
dependencies[1].dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
|
|
dependencies[1].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
|
|
|
|
VkRenderPassCreateInfo renderPassCI = {};
|
|
renderPassCI.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
|
|
renderPassCI.pAttachments = attachs.data();
|
|
renderPassCI.attachmentCount = static_cast<uint32_t>(attachs.size());
|
|
renderPassCI.pSubpasses = &subpass;
|
|
renderPassCI.pDependencies = dependencies.data();
|
|
renderPassCI.dependencyCount = 2;
|
|
VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassCI, nullptr, &pbrFrameBuffer.fbo.renderPass));
|
|
// FBO
|
|
VkImageView attachments[2] = { pbrFrameBuffer.color.imageView,pbrFrameBuffer.depth.imageView };
|
|
VkFramebufferCreateInfo frameBufferCreateInfo = vks::initializers::framebufferCreateInfo();
|
|
frameBufferCreateInfo.renderPass = pbrFrameBuffer.fbo.renderPass;
|
|
frameBufferCreateInfo.pAttachments = attachments;
|
|
frameBufferCreateInfo.attachmentCount = 2;
|
|
frameBufferCreateInfo.width = pbrFrameBuffer.fbo.width;
|
|
frameBufferCreateInfo.height = pbrFrameBuffer.fbo.height;
|
|
frameBufferCreateInfo.layers = 1;
|
|
VK_CHECK_RESULT(vkCreateFramebuffer(device, &frameBufferCreateInfo, nullptr, &pbrFrameBuffer.fbo.frameBuffer));
|
|
|
|
VkSamplerCreateInfo samplerCI = vks::initializers::samplerCreateInfo();
|
|
samplerCI.magFilter = VK_FILTER_NEAREST;
|
|
samplerCI.minFilter = VK_FILTER_NEAREST;
|
|
samplerCI.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
|
|
samplerCI.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
|
|
samplerCI.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
|
|
samplerCI.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
|
|
|
|
samplerCI.minLod = 0.0f;
|
|
samplerCI.maxLod = 1.0f;
|
|
samplerCI.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
|
|
VK_CHECK_RESULT(vkCreateSampler(device, &samplerCI, nullptr, &colorSampler));
|
|
if (tonemappingDescriptorSet != VK_NULL_HANDLE)
|
|
{
|
|
auto imageInfo = vks::initializers::descriptorImageInfo(colorSampler, pbrFrameBuffer.color.imageView, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
|
|
VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(tonemappingDescriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &imageInfo);
|
|
vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr);
|
|
|
|
}
|
|
pbrFrameBuffer.bCreate = true;
|
|
}
|
|
|
|
void VulkanExample::getEnabledFeatures()
|
|
{
|
|
// Fill mode non solid is required for wireframe display
|
|
if (deviceFeatures.fillModeNonSolid) {
|
|
enabledFeatures.fillModeNonSolid = VK_TRUE;
|
|
};
|
|
}
|
|
|
|
void VulkanExample::buildCommandBuffers()
|
|
{
|
|
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
|
|
|
|
VkClearValue clearValues[2];
|
|
clearValues[0].color = defaultClearColor;
|
|
clearValues[0].color = { { 0.25f, 0.25f, 0.25f, 1.0f } };
|
|
clearValues[1].depthStencil = { 1.0f, 0 };
|
|
|
|
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
|
|
renderPassBeginInfo.renderPass = pbrFrameBuffer.fbo.renderPass;
|
|
renderPassBeginInfo.renderArea.offset.x = 0;
|
|
renderPassBeginInfo.renderArea.offset.y = 0;
|
|
renderPassBeginInfo.renderArea.extent.width = width;
|
|
renderPassBeginInfo.renderArea.extent.height = height;
|
|
renderPassBeginInfo.clearValueCount = 2;
|
|
renderPassBeginInfo.pClearValues = clearValues;
|
|
|
|
const VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
|
|
const VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
|
|
|
|
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
|
|
{
|
|
renderPassBeginInfo.framebuffer = pbrFrameBuffer.fbo.frameBuffer;
|
|
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
|
|
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
|
|
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
|
|
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
|
|
// Bind scene matrices descriptor to set 0
|
|
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.pbrLayout, 0, 1, &descriptorSet, 0, nullptr);
|
|
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.pbrLayout, 6, 1, &skinDescriptorSet, 0, nullptr);
|
|
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, wireframe ? pipelines.wireframe : pipelines.solid);
|
|
glTFModel.draw(drawCmdBuffers[i], pipelineLayouts.pbrLayout);
|
|
vkCmdEndRenderPass(drawCmdBuffers[i]);
|
|
|
|
{
|
|
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
|
|
renderPassBeginInfo.renderPass = renderPass;
|
|
renderPassBeginInfo.framebuffer = VulkanExampleBase::frameBuffers[i];
|
|
renderPassBeginInfo.renderArea.extent.width = width;
|
|
renderPassBeginInfo.renderArea.extent.height = height;
|
|
renderPassBeginInfo.clearValueCount = 2;
|
|
renderPassBeginInfo.pClearValues = clearValues;
|
|
|
|
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
|
|
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
|
|
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
|
|
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.tonemappingLayout, 0, 1, &tonemappingDescriptorSet, 0, NULL);
|
|
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.toneMapping);
|
|
vkCmdDraw(drawCmdBuffers[i], 3, 1, 0, 0);
|
|
drawUI(drawCmdBuffers[i]);
|
|
vkCmdEndRenderPass(drawCmdBuffers[i]);
|
|
}
|
|
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
|
|
}
|
|
}
|
|
|
|
void VulkanExample::loadglTFFile(std::string filename, VulkanglTFModel& model, bool bSkyboxFlag)
|
|
{
|
|
tinygltf::Model glTFInput;
|
|
tinygltf::TinyGLTF gltfContext;
|
|
std::string error, warning;
|
|
|
|
this->device = device;
|
|
|
|
#if defined(__ANDROID__)
|
|
// On Android all assets are packed with the apk in a compressed form, so we need to open them using the asset manager
|
|
// We let tinygltf handle this, by passing the asset manager of our app
|
|
tinygltf::asset_manager = androidApp->activity->assetManager;
|
|
#endif
|
|
bool fileLoaded = gltfContext.LoadASCIIFromFile(&glTFInput, &error, &warning, filename);
|
|
|
|
// Pass some Vulkan resources required for setup and rendering to the glTF model loading class
|
|
model.vulkanDevice = vulkanDevice;
|
|
model.copyQueue = queue;
|
|
|
|
std::vector<uint32_t> indexBuffer;
|
|
std::vector<VulkanglTFModel::Vertex> vertexBuffer;
|
|
|
|
if (fileLoaded) {
|
|
model.nodeCount = static_cast<uint32_t>(glTFInput.nodes.size());
|
|
model.loadImages(glTFInput);
|
|
model.loadMaterials(glTFInput);
|
|
model.loadTextures(glTFInput);
|
|
const tinygltf::Scene& scene = glTFInput.scenes[0];
|
|
for (size_t i = 0; i < scene.nodes.size(); i++) {
|
|
const tinygltf::Node node = glTFInput.nodes[scene.nodes[i]];
|
|
model.loadNode(node, glTFInput, nullptr, scene.nodes[i], indexBuffer, vertexBuffer);
|
|
}
|
|
model.loadAnimations(glTFInput);
|
|
}
|
|
else {
|
|
vks::tools::exitFatal("Could not open the glTF file.\n\nThe file is part of the additional asset pack.\n\nRun \"download_assets.py\" in the repository root to download the latest version.", -1);
|
|
return;
|
|
}
|
|
|
|
// Create and upload vertex and index buffer
|
|
// We will be using one single vertex buffer and one single index buffer for the whole glTF scene
|
|
// Primitives (of the glTF model) will then index into these using index offsets
|
|
|
|
size_t vertexBufferSize = vertexBuffer.size() * sizeof(VulkanglTFModel::Vertex);
|
|
size_t indexBufferSize = indexBuffer.size() * sizeof(uint32_t);
|
|
model.indices.count = static_cast<uint32_t>(indexBuffer.size());
|
|
|
|
// Create host visible staging buffers (source)
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
|
vertexBufferSize,
|
|
&vertexStaging.buffer,
|
|
&vertexStaging.memory,
|
|
vertexBuffer.data()));
|
|
// Index data
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
|
indexBufferSize,
|
|
&indexStaging.buffer,
|
|
&indexStaging.memory,
|
|
indexBuffer.data()));
|
|
|
|
// Create device local buffers (target)
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
|
|
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
|
|
vertexBufferSize,
|
|
&model.vertices.buffer,
|
|
&model.vertices.memory));
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
|
|
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
|
|
indexBufferSize,
|
|
&model.indices.buffer,
|
|
&model.indices.memory));
|
|
|
|
// Copy data from staging buffers (host) do device local buffer (gpu)
|
|
VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
|
|
VkBufferCopy copyRegion = {};
|
|
|
|
copyRegion.size = vertexBufferSize;
|
|
vkCmdCopyBuffer(
|
|
copyCmd,
|
|
vertexStaging.buffer,
|
|
model.vertices.buffer,
|
|
1,
|
|
©Region);
|
|
|
|
copyRegion.size = indexBufferSize;
|
|
vkCmdCopyBuffer(
|
|
copyCmd,
|
|
indexStaging.buffer,
|
|
model.indices.buffer,
|
|
1,
|
|
©Region);
|
|
|
|
vulkanDevice->flushCommandBuffer(copyCmd, queue, true);
|
|
|
|
// Free staging resources
|
|
vkDestroyBuffer(device, vertexStaging.buffer, nullptr);
|
|
vkFreeMemory(device, vertexStaging.memory, nullptr);
|
|
vkDestroyBuffer(device, indexStaging.buffer, nullptr);
|
|
vkFreeMemory(device, indexStaging.memory, nullptr);
|
|
}
|
|
|
|
void VulkanExample::loadAssets()
|
|
{
|
|
loadglTFFile(getAssetPath() + "buster_drone/busterDrone.gltf",glTFModel);
|
|
loadglTFFile(getAssetPath() + "models/cube.gltf", skyboxModel, true);
|
|
ibltextures.skyboxCube.loadFromFile(getAssetPath() + "textures/hdr/pisa_cube.ktx", VK_FORMAT_R16G16B16A16_SFLOAT, vulkanDevice, queue);
|
|
|
|
}
|
|
|
|
void VulkanExample::setupDescriptors()
|
|
{
|
|
/*
|
|
This sample uses separate descriptor sets (and layouts) for the matrices and materials (textures)
|
|
*/
|
|
|
|
std::vector<VkDescriptorPoolSize> poolSizes = {
|
|
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 4),
|
|
// One combined image sampler per material image/texture
|
|
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, static_cast<uint32_t>(glTFModel.images.size())),
|
|
// One ssbo per skin
|
|
//vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, static_cast<uint32_t>(glTFModel.skins.size())),
|
|
// sampler descriptor
|
|
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,4),
|
|
//animation storage buffer
|
|
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,1)
|
|
|
|
};
|
|
// One set for matrices and one per model image/texture
|
|
const uint32_t maxSetCount = static_cast<uint32_t>(glTFModel.images.size()) + 6;
|
|
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, maxSetCount);
|
|
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
|
|
|
|
// Descriptor set layouts
|
|
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
|
|
{
|
|
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0),
|
|
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1),
|
|
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 2),
|
|
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 3),
|
|
};
|
|
VkDescriptorSetLayoutCreateInfo descriptorSetLayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
|
|
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayouts.matrices));
|
|
|
|
VkDescriptorSetLayoutBinding materialBufferLayoutBinding = vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_FRAGMENT_BIT, 0);
|
|
descriptorSetLayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(&materialBufferLayoutBinding, 1);
|
|
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayouts.materialUniform));
|
|
|
|
// Descriptor set layout for passing material textures
|
|
VkDescriptorSetLayoutBinding setLayoutBinding = vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 0);
|
|
descriptorSetLayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(&setLayoutBinding, 1);
|
|
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayouts.textures));
|
|
|
|
setLayoutBinding = vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0);
|
|
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayouts.ssbo));
|
|
// Descriptor set layout for passing skin joint matrices
|
|
|
|
//setLayoutBinding = vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0);
|
|
//VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayouts.jointMatrices));
|
|
|
|
// The pipeline layout uses three sets:
|
|
// Set 0 = Scene matrices (VS)
|
|
// Set 1 = Joint matrices (VS)
|
|
// Set 2 = Material texture (FS)
|
|
std::array<VkDescriptorSetLayout, 7> setLayouts = {
|
|
descriptorSetLayouts.matrices,
|
|
//descriptorSetLayouts.jointMatrices,
|
|
descriptorSetLayouts.textures,
|
|
descriptorSetLayouts.textures,
|
|
descriptorSetLayouts.textures,
|
|
descriptorSetLayouts.textures,
|
|
descriptorSetLayouts.materialUniform,
|
|
descriptorSetLayouts.ssbo,
|
|
};
|
|
VkPipelineLayoutCreateInfo pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(setLayouts.data(), static_cast<uint32_t>(setLayouts.size()));
|
|
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayouts.pbrLayout));
|
|
// Descriptor set for scene matrices
|
|
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.matrices, 1);
|
|
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
|
|
std::vector<VkWriteDescriptorSet> writeDescriptorSets =
|
|
{
|
|
vks::initializers::writeDescriptorSet(descriptorSet,VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,0,&shaderData.buffer.descriptor),
|
|
vks::initializers::writeDescriptorSet(descriptorSet,VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,1,&ibltextures.irradianceCube.descriptor),
|
|
vks::initializers::writeDescriptorSet(descriptorSet,VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,2,&ibltextures.lutBrdf.descriptor),
|
|
vks::initializers::writeDescriptorSet(descriptorSet,VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,3,&ibltextures.prefilteredCube.descriptor),
|
|
};
|
|
|
|
vkUpdateDescriptorSets(device, 4, writeDescriptorSets.data(), 0, nullptr);
|
|
|
|
for (auto& material : glTFModel.materials)
|
|
{
|
|
const VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.materialUniform, 1);
|
|
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &material.materialData.descriptorSet));
|
|
VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(
|
|
material.materialData.descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &material.materialData.buffer.descriptor);
|
|
vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr);
|
|
}
|
|
|
|
// Descriptor sets for materials
|
|
for (auto& image : glTFModel.images) {
|
|
const VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.textures, 1);
|
|
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &image.descriptorSet));
|
|
VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(image.descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &image.texture.descriptor);
|
|
vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr);
|
|
}
|
|
{
|
|
const VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.ssbo, 1);
|
|
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &skinDescriptorSet));
|
|
VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(skinDescriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 0, &shaderData.skinSSBO.descriptor);
|
|
vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr);
|
|
}
|
|
|
|
//Tone Mapping pipeline layout
|
|
{
|
|
auto pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayouts.textures, 1);
|
|
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayouts.tonemappingLayout));
|
|
|
|
const VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.textures, 1);
|
|
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &tonemappingDescriptorSet));
|
|
|
|
auto imageInfo = vks::initializers::descriptorImageInfo(colorSampler, pbrFrameBuffer.color.imageView, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
|
|
VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(tonemappingDescriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &imageInfo);
|
|
vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr);
|
|
}
|
|
|
|
}
|
|
|
|
void VulkanExample::preparePipelines()
|
|
{
|
|
VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
|
|
VkPipelineRasterizationStateCreateInfo rasterizationStateCI = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
|
|
VkPipelineColorBlendAttachmentState blendAttachmentStateCI = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
|
|
VkPipelineColorBlendStateCreateInfo colorBlendStateCI = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentStateCI);
|
|
VkPipelineDepthStencilStateCreateInfo depthStencilStateCI = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
|
|
VkPipelineViewportStateCreateInfo viewportStateCI = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
|
|
VkPipelineMultisampleStateCreateInfo multisampleStateCI = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
|
|
const std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
|
|
VkPipelineDynamicStateCreateInfo dynamicStateCI = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables.data(), static_cast<uint32_t>(dynamicStateEnables.size()), 0);
|
|
// Vertex input bindings and attributes
|
|
const std::vector<VkVertexInputBindingDescription> vertexInputBindings = {
|
|
vks::initializers::vertexInputBindingDescription(0, sizeof(VulkanglTFModel::Vertex), VK_VERTEX_INPUT_RATE_VERTEX),
|
|
};
|
|
const std::vector<VkVertexInputAttributeDescription> vertexInputAttributes = {
|
|
vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, pos)), // Location 0: Position
|
|
vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, normal)),// Location 1: Normal
|
|
vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, uv)), // Location 2: Texture coordinates
|
|
vks::initializers::vertexInputAttributeDescription(0, 3, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, color)), // Location 3: Color
|
|
vks::initializers::vertexInputAttributeDescription(0, 4, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, tangent)), // Location 4 : Tangent
|
|
};
|
|
VkPipelineVertexInputStateCreateInfo vertexInputStateCI = vks::initializers::pipelineVertexInputStateCreateInfo();
|
|
vertexInputStateCI.vertexBindingDescriptionCount = static_cast<uint32_t>(vertexInputBindings.size());
|
|
vertexInputStateCI.pVertexBindingDescriptions = vertexInputBindings.data();
|
|
vertexInputStateCI.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertexInputAttributes.size());
|
|
vertexInputStateCI.pVertexAttributeDescriptions = vertexInputAttributes.data();
|
|
|
|
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages = {
|
|
loadShader(getHomeworkShadersPath() + "homework1/mesh.vert.spv", VK_SHADER_STAGE_VERTEX_BIT),
|
|
loadShader(getHomeworkShadersPath() + "homework1/mesh.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT)
|
|
};
|
|
|
|
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayouts.pbrLayout, pbrFrameBuffer.fbo.renderPass, 0);
|
|
pipelineCI.pVertexInputState = &vertexInputStateCI;
|
|
pipelineCI.pInputAssemblyState = &inputAssemblyStateCI;
|
|
pipelineCI.pRasterizationState = &rasterizationStateCI;
|
|
pipelineCI.pColorBlendState = &colorBlendStateCI;
|
|
pipelineCI.pMultisampleState = &multisampleStateCI;
|
|
pipelineCI.pViewportState = &viewportStateCI;
|
|
pipelineCI.pDepthStencilState = &depthStencilStateCI;
|
|
pipelineCI.pDynamicState = &dynamicStateCI;
|
|
pipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
|
|
pipelineCI.pStages = shaderStages.data();
|
|
|
|
// Solid rendering pipeline
|
|
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.solid));
|
|
|
|
// Wire frame rendering pipeline
|
|
if (deviceFeatures.fillModeNonSolid) {
|
|
rasterizationStateCI.polygonMode = VK_POLYGON_MODE_LINE;
|
|
rasterizationStateCI.lineWidth = 1.0f;
|
|
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.wireframe));
|
|
}
|
|
//Create Tone Mapping render pipeline
|
|
prepareToneMappingPipeline();
|
|
}
|
|
|
|
void VulkanExample::prepareToneMappingPipeline()
|
|
{
|
|
if (pipelines.toneMapping != VK_NULL_HANDLE)
|
|
{
|
|
vkDestroyPipeline(device, pipelines.toneMapping, nullptr);
|
|
pipelines.toneMapping = VK_NULL_HANDLE;
|
|
}
|
|
VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
|
|
VkPipelineRasterizationStateCreateInfo rasterizationStateCI = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
|
|
VkPipelineColorBlendAttachmentState blendAttachmentStateCI = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
|
|
VkPipelineColorBlendStateCreateInfo colorBlendStateCI = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentStateCI);
|
|
VkPipelineDepthStencilStateCreateInfo depthStencilStateCI = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
|
|
VkPipelineViewportStateCreateInfo viewportStateCI = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
|
|
VkPipelineMultisampleStateCreateInfo multisampleStateCI = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
|
|
const std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
|
|
VkPipelineDynamicStateCreateInfo dynamicStateCI = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables.data(), static_cast<uint32_t>(dynamicStateEnables.size()), 0);
|
|
VkPipelineVertexInputStateCreateInfo emptyInputState = vks::initializers::pipelineVertexInputStateCreateInfo();
|
|
|
|
const std::string fragPath = ToneMapping ? "homework1/tonemapping_enable.frag.spv" : "homework1/tonemapping_disable.frag.spv";
|
|
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages = {
|
|
loadShader(getHomeworkShadersPath() + "homework1/genbrdflut.vert.spv", VK_SHADER_STAGE_VERTEX_BIT),
|
|
loadShader(getHomeworkShadersPath() + fragPath, VK_SHADER_STAGE_FRAGMENT_BIT)
|
|
};
|
|
|
|
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayouts.tonemappingLayout, renderPass, 0);
|
|
pipelineCI.pVertexInputState = &emptyInputState;
|
|
pipelineCI.pInputAssemblyState = &inputAssemblyStateCI;
|
|
pipelineCI.pRasterizationState = &rasterizationStateCI;
|
|
pipelineCI.pColorBlendState = &colorBlendStateCI;
|
|
pipelineCI.pMultisampleState = &multisampleStateCI;
|
|
pipelineCI.pViewportState = &viewportStateCI;
|
|
pipelineCI.pDepthStencilState = &depthStencilStateCI;
|
|
pipelineCI.pDynamicState = &dynamicStateCI;
|
|
pipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
|
|
pipelineCI.pStages = shaderStages.data();
|
|
|
|
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.toneMapping));
|
|
}
|
|
|
|
// Prepare and initialize uniform buffer containing shader uniforms
|
|
void VulkanExample::prepareUniformBuffers()
|
|
{
|
|
// Vertex shader uniform buffer block
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
|
&shaderData.buffer,
|
|
sizeof(shaderData.values)));
|
|
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_STORAGE_BUFFER_BIT,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
|
&shaderData.skinSSBO,
|
|
sizeof(glm::mat4) * glTFModel.nodeCount));
|
|
// Map persistent
|
|
VK_CHECK_RESULT(shaderData.buffer.map());
|
|
VK_CHECK_RESULT(shaderData.skinSSBO.map());
|
|
|
|
for (auto& material : glTFModel.materials)
|
|
{
|
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
|
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
|
&material.materialData.buffer,
|
|
sizeof(VulkanglTFModel::MaterialData::Values),
|
|
&material.materialData.values
|
|
));
|
|
|
|
}
|
|
|
|
|
|
|
|
updateUniformBuffers();
|
|
}
|
|
|
|
void VulkanExample::updateUniformBuffers()
|
|
{
|
|
shaderData.values.projection = camera.matrices.perspective;
|
|
shaderData.values.model = camera.matrices.view;
|
|
shaderData.values.viewPos = camera.viewPos;
|
|
shaderData.values.bFlagSet.x = normalMapping;
|
|
shaderData.values.bFlagSet.y = pbrEnabled;
|
|
|
|
memcpy(shaderData.buffer.mapped, &shaderData.values, sizeof(shaderData.values));
|
|
}
|
|
|
|
// --------- BRDF LUT precompute preparation ----------------
|
|
void VulkanExample::generateIrradianceCubemap()
|
|
{
|
|
auto tStart = std::chrono::high_resolution_clock::now();
|
|
|
|
constexpr VkFormat format = VK_FORMAT_R32G32B32A32_SFLOAT;
|
|
constexpr int32_t dim = 64;
|
|
const uint32_t numMips = static_cast<uint32_t>(floor(log2(dim))) + 1;
|
|
|
|
VkImageCreateInfo imageCI = vks::initializers::imageCreateInfo();
|
|
imageCI.imageType = VK_IMAGE_TYPE_2D;
|
|
imageCI.format = format;
|
|
imageCI.extent.width = dim;
|
|
imageCI.extent.height = dim;
|
|
imageCI.extent.depth = 1;
|
|
imageCI.mipLevels = numMips;
|
|
imageCI.arrayLayers = 6;
|
|
imageCI.samples = VK_SAMPLE_COUNT_1_BIT;
|
|
imageCI.tiling = VK_IMAGE_TILING_OPTIMAL;
|
|
imageCI.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
|
|
imageCI.flags = VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
|
|
VK_CHECK_RESULT(vkCreateImage(device, &imageCI, nullptr, &ibltextures.irradianceCube.image))
|
|
|
|
// allocate memory for irradiance cube map
|
|
VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo();
|
|
VkMemoryRequirements memReqs;
|
|
vkGetImageMemoryRequirements(device, ibltextures.irradianceCube.image, &memReqs);
|
|
memAlloc.allocationSize = memReqs.size;
|
|
memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
|
|
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &ibltextures.irradianceCube.deviceMemory))
|
|
VK_CHECK_RESULT(vkBindImageMemory(device, ibltextures.irradianceCube.image, ibltextures.irradianceCube.deviceMemory, 0))
|
|
|
|
|
|
VkImageViewCreateInfo viewCI = vks::initializers::imageViewCreateInfo();
|
|
viewCI.viewType = VK_IMAGE_VIEW_TYPE_CUBE;
|
|
viewCI.format = format;
|
|
viewCI.subresourceRange = {};
|
|
viewCI.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
viewCI.subresourceRange.levelCount = numMips;
|
|
viewCI.subresourceRange.layerCount = 6;
|
|
viewCI.image = ibltextures.irradianceCube.image;
|
|
VK_CHECK_RESULT(vkCreateImageView(device, &viewCI, nullptr, &ibltextures.irradianceCube.view))
|
|
|
|
// set up sampler and image view
|
|
VkSamplerCreateInfo samplerCI = vks::initializers::samplerCreateInfo();
|
|
samplerCI.magFilter = VK_FILTER_LINEAR;
|
|
samplerCI.minFilter = VK_FILTER_LINEAR;
|
|
samplerCI.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
|
|
samplerCI.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
|
|
samplerCI.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
|
|
samplerCI.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
|
|
samplerCI.minLod = 0.0f;
|
|
samplerCI.maxLod = static_cast<float>(numMips);
|
|
samplerCI.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
|
|
VK_CHECK_RESULT(vkCreateSampler(device, &samplerCI, nullptr, &ibltextures.irradianceCube.sampler))
|
|
|
|
ibltextures.irradianceCube.descriptor.imageView = ibltextures.irradianceCube.view;
|
|
ibltextures.irradianceCube.descriptor.sampler = ibltextures.irradianceCube.sampler;
|
|
ibltextures.irradianceCube.descriptor.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
|
|
ibltextures.irradianceCube.device = vulkanDevice;
|
|
|
|
|
|
//Setup Framebuffer and so on
|
|
VkAttachmentDescription attachDescription = {};
|
|
attachDescription.format = format;
|
|
attachDescription.samples = VK_SAMPLE_COUNT_1_BIT;
|
|
attachDescription.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
|
|
attachDescription.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
|
|
attachDescription.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
|
|
attachDescription.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
|
|
attachDescription.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
|
|
attachDescription.finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
|
|
|
|
VkAttachmentReference colorReference = { 0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL };
|
|
VkSubpassDescription subpassDescription = {};
|
|
subpassDescription.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
|
|
subpassDescription.colorAttachmentCount = 1;
|
|
subpassDescription.pColorAttachments = &colorReference;
|
|
|
|
std::array<VkSubpassDependency, 2> dependencies;
|
|
dependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL;
|
|
dependencies[0].dstSubpass = 0;
|
|
dependencies[0].srcStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
|
|
dependencies[0].dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
|
|
dependencies[0].srcAccessMask = VK_ACCESS_MEMORY_READ_BIT;
|
|
dependencies[0].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
|
|
dependencies[0].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
|
|
dependencies[1].srcSubpass = 0;
|
|
dependencies[1].dstSubpass = VK_SUBPASS_EXTERNAL;
|
|
dependencies[1].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
|
|
dependencies[1].dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
|
|
dependencies[1].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
|
|
dependencies[1].dstAccessMask = VK_ACCESS_MEMORY_READ_BIT;
|
|
dependencies[1].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
|
|
//set up render pass
|
|
VkRenderPassCreateInfo renderPassCI = vks::initializers::renderPassCreateInfo();
|
|
renderPassCI.attachmentCount = 1;
|
|
renderPassCI.pAttachments = &attachDescription;
|
|
renderPassCI.subpassCount = 1;
|
|
renderPassCI.pSubpasses = &subpassDescription;
|
|
renderPassCI.dependencyCount = 2;
|
|
renderPassCI.pDependencies = dependencies.data();
|
|
VkRenderPass renderpass;
|
|
VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassCI, nullptr, &renderpass));
|
|
|
|
// create offscreen image
|
|
VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo();
|
|
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
|
|
imageCreateInfo.format = format;
|
|
imageCreateInfo.extent.width = dim;
|
|
imageCreateInfo.extent.height = dim;
|
|
imageCreateInfo.extent.depth = 1;
|
|
imageCreateInfo.mipLevels = 1;
|
|
imageCreateInfo.arrayLayers = 1;
|
|
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
|
|
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
|
|
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
|
|
imageCreateInfo.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
|
|
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
|
|
VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &offscreen.image))
|
|
|
|
// allocate memory
|
|
VkMemoryAllocateInfo imageCIMemAlloc = vks::initializers::memoryAllocateInfo();
|
|
VkMemoryRequirements imageCIMemReqs;
|
|
vkGetImageMemoryRequirements(device, offscreen.image, &imageCIMemReqs);
|
|
imageCIMemAlloc.allocationSize = imageCIMemReqs.size;
|
|
imageCIMemAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(imageCIMemReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
|
|
VK_CHECK_RESULT(vkAllocateMemory(device, &imageCIMemAlloc, nullptr, &offscreen.memory))
|
|
VK_CHECK_RESULT(vkBindImageMemory(device, offscreen.image, offscreen.memory, 0))
|
|
|
|
// create color image view
|
|
VkImageViewCreateInfo colorImageView = vks::initializers::imageViewCreateInfo();
|
|
colorImageView.viewType = VK_IMAGE_VIEW_TYPE_2D;
|
|
colorImageView.format = format;
|
|
colorImageView.flags = 0;
|
|
colorImageView.subresourceRange = {};
|
|
colorImageView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
colorImageView.subresourceRange.baseMipLevel = 0;
|
|
colorImageView.subresourceRange.levelCount = 1;
|
|
colorImageView.subresourceRange.baseArrayLayer = 0;
|
|
colorImageView.subresourceRange.layerCount = 1;
|
|
colorImageView.image = offscreen.image;
|
|
VK_CHECK_RESULT(vkCreateImageView(device, &colorImageView, nullptr, &offscreen.view))
|
|
|
|
// set up framebuffer for offscreen image
|
|
VkFramebufferCreateInfo fbufCreateInfo = vks::initializers::framebufferCreateInfo();
|
|
fbufCreateInfo.renderPass = renderpass;
|
|
fbufCreateInfo.attachmentCount = 1;
|
|
fbufCreateInfo.pAttachments = &offscreen.view;
|
|
fbufCreateInfo.width = dim;
|
|
fbufCreateInfo.height = dim;
|
|
fbufCreateInfo.layers = 1;
|
|
VK_CHECK_RESULT(vkCreateFramebuffer(device, &fbufCreateInfo, nullptr, &offscreen.framebuffer))
|
|
|
|
VkCommandBuffer layoutCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
|
|
vks::tools::setImageLayout(
|
|
layoutCmd,
|
|
offscreen.image,
|
|
VK_IMAGE_ASPECT_COLOR_BIT,
|
|
VK_IMAGE_LAYOUT_UNDEFINED,
|
|
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
|
|
vulkanDevice->flushCommandBuffer(layoutCmd, queue, true);
|
|
|
|
// create descriptor set layout
|
|
VkDescriptorSetLayout descriptorsetlayout;
|
|
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
|
|
{
|
|
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 0),
|
|
};
|
|
VkDescriptorSetLayoutCreateInfo descriptorsetlayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
|
|
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorsetlayoutCI, nullptr, &descriptorsetlayout));
|
|
// allocate pool
|
|
std::vector<VkDescriptorPoolSize> poolSizes = { vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1) };
|
|
VkDescriptorPoolCreateInfo descriptorPoolCI = vks::initializers::descriptorPoolCreateInfo(poolSizes, 2);
|
|
VkDescriptorPool descriptorpool;
|
|
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolCI, nullptr, &descriptorpool));
|
|
//write to poos
|
|
VkDescriptorSet descriptorset;
|
|
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorpool, &descriptorsetlayout, 1);
|
|
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorset));
|
|
VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(descriptorset, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &ibltextures.skyboxCube.descriptor);
|
|
vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr);
|
|
// push matrix
|
|
VkPipelineLayout pipelinelayout;
|
|
std::vector<VkPushConstantRange> pushConstantRanges =
|
|
{
|
|
vks::initializers::pushConstantRange(VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, sizeof(IrradiancePushBlock), 0)
|
|
};
|
|
VkPipelineLayoutCreateInfo pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(&descriptorsetlayout, 1);
|
|
pipelineLayoutCI.pushConstantRangeCount = 1;
|
|
pipelineLayoutCI.pPushConstantRanges = pushConstantRanges.data();
|
|
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelinelayout));
|
|
|
|
//Pipeline Setting
|
|
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
|
|
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE);
|
|
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
|
|
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
|
|
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_FALSE, VK_FALSE, VK_COMPARE_OP_LESS_OR_EQUAL);
|
|
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1);
|
|
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT);
|
|
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
|
|
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
|
|
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
|
|
|
|
const std::vector<VkVertexInputBindingDescription> vertexInputBindings =
|
|
{
|
|
vks::initializers::vertexInputBindingDescription(0, sizeof(VulkanglTFModel::Vertex), VK_VERTEX_INPUT_RATE_VERTEX),
|
|
};
|
|
|
|
const std::vector<VkVertexInputAttributeDescription> vertexInputAttributes = {
|
|
vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, pos)), // Location 0: Position
|
|
};
|
|
VkPipelineVertexInputStateCreateInfo vertexInputStateCI = vks::initializers::pipelineVertexInputStateCreateInfo();
|
|
vertexInputStateCI.vertexBindingDescriptionCount = static_cast<uint32_t>(vertexInputBindings.size());
|
|
vertexInputStateCI.pVertexBindingDescriptions = vertexInputBindings.data();
|
|
vertexInputStateCI.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertexInputAttributes.size());
|
|
vertexInputStateCI.pVertexAttributeDescriptions = vertexInputAttributes.data();
|
|
|
|
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelinelayout, renderpass);
|
|
pipelineCI.pInputAssemblyState = &inputAssemblyState;
|
|
pipelineCI.pRasterizationState = &rasterizationState;
|
|
pipelineCI.pColorBlendState = &colorBlendState;
|
|
pipelineCI.pMultisampleState = &multisampleState;
|
|
pipelineCI.pViewportState = &viewportState;
|
|
pipelineCI.pDepthStencilState = &depthStencilState;
|
|
pipelineCI.pDynamicState = &dynamicState;
|
|
pipelineCI.stageCount = 2;
|
|
pipelineCI.pStages = shaderStages.data();
|
|
pipelineCI.renderPass = renderpass;
|
|
|
|
pipelineCI.pVertexInputState = &vertexInputStateCI;
|
|
shaderStages[0] = loadShader(getHomeworkShadersPath() + "homework1/filtercube.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
|
|
shaderStages[1] = loadShader(getHomeworkShadersPath() + "homework1/irradiancecube.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
|
|
VkPipeline pipeline;
|
|
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipeline));
|
|
|
|
// offscreen Render pass begin
|
|
VkClearValue clearValues[1];
|
|
clearValues[0].color = { { 0.0f, 0.0f, 0.2f, 0.0f } };
|
|
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
|
|
renderPassBeginInfo.renderPass = renderpass;
|
|
renderPassBeginInfo.framebuffer = offscreen.framebuffer;
|
|
renderPassBeginInfo.renderArea.extent.width = dim;
|
|
renderPassBeginInfo.renderArea.extent.height = dim;
|
|
renderPassBeginInfo.clearValueCount = 1;
|
|
renderPassBeginInfo.pClearValues = clearValues;
|
|
|
|
//six face in cube map
|
|
std::vector<glm::mat4> matrices = {
|
|
// POSITIVE_X
|
|
glm::rotate(glm::rotate(glm::mat4(1.0f), glm::radians(90.0f), glm::vec3(0.0f, 1.0f, 0.0f)), glm::radians(180.0f), glm::vec3(1.0f, 0.0f, 0.0f)),
|
|
// NEGATIVE_X
|
|
glm::rotate(glm::rotate(glm::mat4(1.0f), glm::radians(-90.0f), glm::vec3(0.0f, 1.0f, 0.0f)), glm::radians(180.0f), glm::vec3(1.0f, 0.0f, 0.0f)),
|
|
// POSITIVE_Y
|
|
glm::rotate(glm::mat4(1.0f), glm::radians(-90.0f), glm::vec3(1.0f, 0.0f, 0.0f)),
|
|
// NEGATIVE_Y
|
|
glm::rotate(glm::mat4(1.0f), glm::radians(90.0f), glm::vec3(1.0f, 0.0f, 0.0f)),
|
|
// POSITIVE_Z
|
|
glm::rotate(glm::mat4(1.0f), glm::radians(180.0f), glm::vec3(1.0f, 0.0f, 0.0f)),
|
|
// NEGATIVE_Z
|
|
glm::rotate(glm::mat4(1.0f), glm::radians(180.0f), glm::vec3(0.0f, 0.0f, 1.0f)),
|
|
};
|
|
VkCommandBuffer cmdBuf = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
|
|
VkViewport viewport = vks::initializers::viewport((float)dim, (float)dim, 0.0f, 1.0f);
|
|
VkRect2D scissor = vks::initializers::rect2D(dim, dim, 0, 0);
|
|
|
|
vkCmdSetViewport(cmdBuf, 0, 1, &viewport);
|
|
vkCmdSetScissor(cmdBuf, 0, 1, &scissor);
|
|
|
|
VkImageSubresourceRange subresourceRange = {};
|
|
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
subresourceRange.baseMipLevel = 0;
|
|
subresourceRange.levelCount = numMips;
|
|
subresourceRange.layerCount = 6;
|
|
|
|
vks::tools::setImageLayout(
|
|
cmdBuf,
|
|
ibltextures.irradianceCube.image,
|
|
VK_IMAGE_LAYOUT_UNDEFINED,
|
|
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
|
|
subresourceRange);
|
|
|
|
for (uint32_t m = 0; m < numMips; ++m)
|
|
{
|
|
for (uint32_t f = 0; f < 6; ++f)
|
|
{
|
|
viewport.width = static_cast<float>(dim * std::pow(0.5f, m));
|
|
viewport.height = static_cast<float>(dim * std::pow(0.5f, m));
|
|
vkCmdSetViewport(cmdBuf, 0, 1, &viewport);
|
|
// Render scene from cube face's point of view
|
|
vkCmdBeginRenderPass(cmdBuf, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
|
|
irradinacePushBlock.mvp = glm::perspective((float)(M_PI / 2.0), 1.0f, 0.1f, 512.0f) * matrices[f];
|
|
vkCmdPushConstants(cmdBuf, pipelinelayout, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0, sizeof(IrradiancePushBlock), &irradinacePushBlock);
|
|
|
|
vkCmdBindPipeline(cmdBuf, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
|
|
vkCmdBindDescriptorSets(cmdBuf, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelinelayout, 0, 1, &descriptorset, 0, NULL);
|
|
skyboxModel.draw(cmdBuf, pipelinelayout);
|
|
vkCmdEndRenderPass(cmdBuf);
|
|
|
|
vks::tools::setImageLayout(
|
|
cmdBuf,
|
|
offscreen.image,
|
|
VK_IMAGE_ASPECT_COLOR_BIT,
|
|
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
|
|
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
|
|
|
|
VkImageCopy copyRegion = {};
|
|
copyRegion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
copyRegion.srcSubresource.layerCount = 1;
|
|
copyRegion.srcSubresource.mipLevel = 0;
|
|
copyRegion.srcSubresource.baseArrayLayer = 0;
|
|
|
|
copyRegion.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
copyRegion.dstSubresource.layerCount = 1;
|
|
copyRegion.dstSubresource.mipLevel = m;
|
|
copyRegion.dstSubresource.baseArrayLayer = f;
|
|
|
|
copyRegion.extent.width = static_cast<uint32_t>(viewport.width);
|
|
copyRegion.extent.height = static_cast<uint32_t>(viewport.height);
|
|
copyRegion.extent.depth = 1;
|
|
|
|
vkCmdCopyImage(
|
|
cmdBuf,
|
|
offscreen.image,
|
|
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
|
|
ibltextures.irradianceCube.image,
|
|
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
|
|
1,
|
|
©Region);
|
|
vks::tools::setImageLayout(cmdBuf,
|
|
offscreen.image,
|
|
VK_IMAGE_ASPECT_COLOR_BIT,
|
|
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
|
|
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL
|
|
);
|
|
}
|
|
}
|
|
|
|
vks::tools::setImageLayout(cmdBuf,
|
|
ibltextures.irradianceCube.image,
|
|
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
|
|
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
|
|
subresourceRange);
|
|
vulkanDevice->flushCommandBuffer(cmdBuf, queue);
|
|
|
|
vkDestroyRenderPass(device, renderpass, nullptr);
|
|
vkDestroyFramebuffer(device, offscreen.framebuffer, nullptr);
|
|
vkFreeMemory(device, offscreen.memory, nullptr);
|
|
vkDestroyImageView(device, offscreen.view, nullptr);
|
|
vkDestroyImage(device, offscreen.image, nullptr);
|
|
vkDestroyDescriptorPool(device, descriptorpool, nullptr);
|
|
vkDestroyDescriptorSetLayout(device, descriptorsetlayout, nullptr);
|
|
vkDestroyPipeline(device, pipeline, nullptr);
|
|
vkDestroyPipelineLayout(device, pipelinelayout, nullptr);
|
|
|
|
auto tEnd = std::chrono::high_resolution_clock::now();
|
|
auto tDiff = std::chrono::duration<double, std::milli>(tEnd - tStart).count();
|
|
std::cout << "Generating irradiance cube with " << numMips << " mip levels took " << tDiff << " ms" << std::endl;
|
|
|
|
}
|
|
|
|
|
|
void VulkanExample::generatePrefilteredCubemap()
|
|
{
|
|
auto tStart = std::chrono::high_resolution_clock::now();
|
|
|
|
constexpr VkFormat format = VK_FORMAT_R32G32B32A32_SFLOAT;
|
|
constexpr int32_t dim = 512;
|
|
const uint32_t numMips = static_cast<uint32_t>(floor(log2(dim))) + 1;
|
|
|
|
VkImageCreateInfo imageCI = vks::initializers::imageCreateInfo();
|
|
imageCI.imageType = VK_IMAGE_TYPE_2D;
|
|
imageCI.format = format;
|
|
imageCI.extent.width = dim;
|
|
imageCI.extent.height = dim;
|
|
imageCI.extent.depth = 1;
|
|
imageCI.mipLevels = numMips;
|
|
imageCI.arrayLayers = 6;
|
|
imageCI.samples = VK_SAMPLE_COUNT_1_BIT;
|
|
imageCI.tiling = VK_IMAGE_TILING_OPTIMAL;
|
|
imageCI.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
|
|
imageCI.flags = VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
|
|
|
|
VK_CHECK_RESULT(vkCreateImage(device, &imageCI, nullptr, &ibltextures.prefilteredCube.image));
|
|
VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo();
|
|
VkMemoryRequirements memReqs;
|
|
vkGetImageMemoryRequirements(device, ibltextures.prefilteredCube.image, &memReqs);
|
|
memAlloc.allocationSize = memReqs.size;
|
|
memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
|
|
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &ibltextures.prefilteredCube.deviceMemory));
|
|
VK_CHECK_RESULT(vkBindImageMemory(device, ibltextures.prefilteredCube.image, ibltextures.prefilteredCube.deviceMemory, 0));
|
|
|
|
// Image view
|
|
VkImageViewCreateInfo viewCI = vks::initializers::imageViewCreateInfo();
|
|
viewCI.viewType = VK_IMAGE_VIEW_TYPE_CUBE;
|
|
viewCI.format = format;
|
|
viewCI.subresourceRange = {};
|
|
viewCI.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
viewCI.subresourceRange.levelCount = numMips;
|
|
viewCI.subresourceRange.layerCount = 6;
|
|
viewCI.image = ibltextures.prefilteredCube.image;
|
|
VK_CHECK_RESULT(vkCreateImageView(device, &viewCI, nullptr, &ibltextures.prefilteredCube.view));
|
|
|
|
// Sampler
|
|
VkSamplerCreateInfo samplerCI = vks::initializers::samplerCreateInfo();
|
|
samplerCI.magFilter = VK_FILTER_LINEAR;
|
|
samplerCI.minFilter = VK_FILTER_LINEAR;
|
|
samplerCI.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
|
|
samplerCI.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
|
|
samplerCI.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
|
|
samplerCI.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
|
|
samplerCI.minLod = 0.0f;
|
|
samplerCI.maxLod = static_cast<float>(numMips);
|
|
samplerCI.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
|
|
VK_CHECK_RESULT(vkCreateSampler(device, &samplerCI, nullptr, &ibltextures.prefilteredCube.sampler));
|
|
|
|
ibltextures.prefilteredCube.descriptor.imageView = ibltextures.prefilteredCube.view;
|
|
ibltextures.prefilteredCube.descriptor.sampler = ibltextures.prefilteredCube.sampler;
|
|
ibltextures.prefilteredCube.descriptor.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
|
|
ibltextures.prefilteredCube.device = vulkanDevice;
|
|
|
|
// FB, Att, RP, Pipe, etc.
|
|
VkAttachmentDescription attDesc = {};
|
|
// Color attachment
|
|
attDesc.format = format;
|
|
attDesc.samples = VK_SAMPLE_COUNT_1_BIT;
|
|
attDesc.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
|
|
attDesc.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
|
|
attDesc.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
|
|
attDesc.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
|
|
attDesc.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
|
|
attDesc.finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
|
|
VkAttachmentReference colorReference = { 0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL };
|
|
|
|
VkSubpassDescription subpassDescription = {};
|
|
subpassDescription.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
|
|
subpassDescription.colorAttachmentCount = 1;
|
|
subpassDescription.pColorAttachments = &colorReference;
|
|
|
|
// Use subpass dependencies for layout transitions
|
|
std::array<VkSubpassDependency, 2> dependencies;
|
|
dependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL;
|
|
dependencies[0].dstSubpass = 0;
|
|
dependencies[0].srcStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
|
|
dependencies[0].dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
|
|
dependencies[0].srcAccessMask = VK_ACCESS_MEMORY_READ_BIT;
|
|
dependencies[0].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
|
|
dependencies[0].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
|
|
dependencies[1].srcSubpass = 0;
|
|
dependencies[1].dstSubpass = VK_SUBPASS_EXTERNAL;
|
|
dependencies[1].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
|
|
dependencies[1].dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
|
|
dependencies[1].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
|
|
dependencies[1].dstAccessMask = VK_ACCESS_MEMORY_READ_BIT;
|
|
dependencies[1].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
|
|
|
|
// Renderpass
|
|
VkRenderPassCreateInfo renderPassCI = vks::initializers::renderPassCreateInfo();
|
|
renderPassCI.attachmentCount = 1;
|
|
renderPassCI.pAttachments = &attDesc;
|
|
renderPassCI.subpassCount = 1;
|
|
renderPassCI.pSubpasses = &subpassDescription;
|
|
renderPassCI.dependencyCount = 2;
|
|
renderPassCI.pDependencies = dependencies.data();
|
|
VkRenderPass renderpass;
|
|
VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassCI, nullptr, &renderpass));
|
|
|
|
//framebuffer
|
|
{
|
|
// Color attachment
|
|
VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo();
|
|
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
|
|
imageCreateInfo.format = format;
|
|
imageCreateInfo.extent.width = dim;
|
|
imageCreateInfo.extent.height = dim;
|
|
imageCreateInfo.extent.depth = 1;
|
|
imageCreateInfo.mipLevels = 1;
|
|
imageCreateInfo.arrayLayers = 1;
|
|
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
|
|
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
|
|
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
|
|
imageCreateInfo.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
|
|
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
|
|
VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &offscreen.image));
|
|
|
|
VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo();
|
|
VkMemoryRequirements memReqs;
|
|
vkGetImageMemoryRequirements(device, offscreen.image, &memReqs);
|
|
memAlloc.allocationSize = memReqs.size;
|
|
memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
|
|
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &offscreen.memory));
|
|
VK_CHECK_RESULT(vkBindImageMemory(device, offscreen.image, offscreen.memory, 0));
|
|
|
|
VkImageViewCreateInfo colorImageView = vks::initializers::imageViewCreateInfo();
|
|
colorImageView.viewType = VK_IMAGE_VIEW_TYPE_2D;
|
|
colorImageView.format = format;
|
|
colorImageView.flags = 0;
|
|
colorImageView.subresourceRange = {};
|
|
colorImageView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
colorImageView.subresourceRange.baseMipLevel = 0;
|
|
colorImageView.subresourceRange.levelCount = 1;
|
|
colorImageView.subresourceRange.baseArrayLayer = 0;
|
|
colorImageView.subresourceRange.layerCount = 1;
|
|
colorImageView.image = offscreen.image;
|
|
VK_CHECK_RESULT(vkCreateImageView(device, &colorImageView, nullptr, &offscreen.view));
|
|
|
|
VkFramebufferCreateInfo fbufCreateInfo = vks::initializers::framebufferCreateInfo();
|
|
fbufCreateInfo.renderPass = renderpass;
|
|
fbufCreateInfo.attachmentCount = 1;
|
|
fbufCreateInfo.pAttachments = &offscreen.view;
|
|
fbufCreateInfo.width = dim;
|
|
fbufCreateInfo.height = dim;
|
|
fbufCreateInfo.layers = 1;
|
|
VK_CHECK_RESULT(vkCreateFramebuffer(device, &fbufCreateInfo, nullptr, &offscreen.framebuffer));
|
|
|
|
VkCommandBuffer layoutCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
|
|
vks::tools::setImageLayout(
|
|
layoutCmd,
|
|
offscreen.image,
|
|
VK_IMAGE_ASPECT_COLOR_BIT,
|
|
VK_IMAGE_LAYOUT_UNDEFINED,
|
|
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
|
|
vulkanDevice->flushCommandBuffer(layoutCmd, queue, true);
|
|
}
|
|
|
|
// Descriptors
|
|
VkDescriptorSetLayout descriptorsetlayout;
|
|
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
|
|
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 0),
|
|
};
|
|
VkDescriptorSetLayoutCreateInfo descriptorsetlayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
|
|
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorsetlayoutCI, nullptr, &descriptorsetlayout));
|
|
|
|
// Descriptor Pool
|
|
std::vector<VkDescriptorPoolSize> poolSizes = { vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1) };
|
|
VkDescriptorPoolCreateInfo descriptorPoolCI = vks::initializers::descriptorPoolCreateInfo(poolSizes, 2);
|
|
VkDescriptorPool descriptorpool;
|
|
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolCI, nullptr, &descriptorpool));
|
|
|
|
VkDescriptorSet descriptorset;
|
|
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorpool, &descriptorsetlayout, 1);
|
|
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorset));
|
|
VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(descriptorset, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &ibltextures.skyboxCube.descriptor);
|
|
vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr);
|
|
|
|
|
|
std::vector<VkPushConstantRange> pushConstantRanges = {
|
|
vks::initializers::pushConstantRange(VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, sizeof(PrefilterPushBlock), 0),
|
|
};
|
|
VkPipelineLayoutCreateInfo pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(&descriptorsetlayout, 1);
|
|
pipelineLayoutCI.pushConstantRangeCount = 1;
|
|
pipelineLayoutCI.pPushConstantRanges = pushConstantRanges.data();
|
|
VkPipelineLayout pipelinelayout;
|
|
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelinelayout));
|
|
|
|
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
|
|
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE);
|
|
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
|
|
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
|
|
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_FALSE, VK_FALSE, VK_COMPARE_OP_LESS_OR_EQUAL);
|
|
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1);
|
|
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT);
|
|
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
|
|
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
|
|
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
|
|
|
|
const std::vector<VkVertexInputBindingDescription> vertexInputBindings =
|
|
{
|
|
vks::initializers::vertexInputBindingDescription(0, sizeof(VulkanglTFModel::Vertex), VK_VERTEX_INPUT_RATE_VERTEX),
|
|
};
|
|
|
|
const std::vector<VkVertexInputAttributeDescription> vertexInputAttributes = {
|
|
vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, pos)), // Location 0: Position
|
|
};
|
|
VkPipelineVertexInputStateCreateInfo vertexInputStateCI = vks::initializers::pipelineVertexInputStateCreateInfo();
|
|
vertexInputStateCI.vertexBindingDescriptionCount = static_cast<uint32_t>(vertexInputBindings.size());
|
|
vertexInputStateCI.pVertexBindingDescriptions = vertexInputBindings.data();
|
|
vertexInputStateCI.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertexInputAttributes.size());
|
|
vertexInputStateCI.pVertexAttributeDescriptions = vertexInputAttributes.data();
|
|
|
|
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelinelayout, renderpass);
|
|
pipelineCI.pInputAssemblyState = &inputAssemblyState;
|
|
pipelineCI.pRasterizationState = &rasterizationState;
|
|
pipelineCI.pColorBlendState = &colorBlendState;
|
|
pipelineCI.pMultisampleState = &multisampleState;
|
|
pipelineCI.pViewportState = &viewportState;
|
|
pipelineCI.pDepthStencilState = &depthStencilState;
|
|
pipelineCI.pDynamicState = &dynamicState;
|
|
pipelineCI.stageCount = 2;
|
|
pipelineCI.pStages = shaderStages.data();
|
|
pipelineCI.renderPass = renderpass;
|
|
pipelineCI.pVertexInputState = &vertexInputStateCI;
|
|
|
|
shaderStages[0] = loadShader(getHomeworkShadersPath() + "homework1/filtercube.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
|
|
shaderStages[1] = loadShader(getHomeworkShadersPath() + "homework1/prefilterenvmap.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
|
|
|
|
VkPipeline pipeline;
|
|
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipeline));
|
|
|
|
//Render & build cmd
|
|
VkClearValue clearValues[1];
|
|
clearValues[0].color = { { 0.0f, 0.0f, 0.2f, 0.0f } };
|
|
|
|
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
|
|
// Reuse render pass from example pass
|
|
renderPassBeginInfo.renderPass = renderpass;
|
|
renderPassBeginInfo.framebuffer = offscreen.framebuffer;
|
|
renderPassBeginInfo.renderArea.extent.width = dim;
|
|
renderPassBeginInfo.renderArea.extent.height = dim;
|
|
renderPassBeginInfo.clearValueCount = 1;
|
|
renderPassBeginInfo.pClearValues = clearValues;
|
|
|
|
std::vector<glm::mat4> matrices = {
|
|
// POSITIVE_X
|
|
glm::rotate(glm::rotate(glm::mat4(1.0f), glm::radians(90.0f), glm::vec3(0.0f, 1.0f, 0.0f)), glm::radians(180.0f), glm::vec3(1.0f, 0.0f, 0.0f)),
|
|
// NEGATIVE_X
|
|
glm::rotate(glm::rotate(glm::mat4(1.0f), glm::radians(-90.0f), glm::vec3(0.0f, 1.0f, 0.0f)), glm::radians(180.0f), glm::vec3(1.0f, 0.0f, 0.0f)),
|
|
// POSITIVE_Y
|
|
glm::rotate(glm::mat4(1.0f), glm::radians(-90.0f), glm::vec3(1.0f, 0.0f, 0.0f)),
|
|
// NEGATIVE_Y
|
|
glm::rotate(glm::mat4(1.0f), glm::radians(90.0f), glm::vec3(1.0f, 0.0f, 0.0f)),
|
|
// POSITIVE_Z
|
|
glm::rotate(glm::mat4(1.0f), glm::radians(180.0f), glm::vec3(1.0f, 0.0f, 0.0f)),
|
|
// NEGATIVE_Z
|
|
glm::rotate(glm::mat4(1.0f), glm::radians(180.0f), glm::vec3(0.0f, 0.0f, 1.0f)),
|
|
};
|
|
VkCommandBuffer cmdBuf = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
|
|
|
|
VkViewport viewport = vks::initializers::viewport((float)dim, (float)dim, 0.0f, 1.0f);
|
|
VkRect2D scissor = vks::initializers::rect2D(dim, dim, 0, 0);
|
|
|
|
vkCmdSetViewport(cmdBuf, 0, 1, &viewport);
|
|
vkCmdSetScissor(cmdBuf, 0, 1, &scissor);
|
|
|
|
VkImageSubresourceRange subresourceRange = {};
|
|
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
subresourceRange.baseMipLevel = 0;
|
|
subresourceRange.levelCount = numMips;
|
|
subresourceRange.layerCount = 6;
|
|
|
|
vks::tools::setImageLayout(
|
|
cmdBuf,
|
|
ibltextures.prefilteredCube.image,
|
|
VK_IMAGE_LAYOUT_UNDEFINED,
|
|
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
|
|
subresourceRange);
|
|
|
|
for (uint32_t m = 0; m < numMips; ++m)
|
|
{
|
|
//mip level according to roughness
|
|
prefilterPushBlock.roughness = float(m) / float(numMips - 1);
|
|
for (uint32_t f = 0; f < 6; ++f)
|
|
{
|
|
viewport.width = static_cast<float>(dim * std::pow(0.5f, m));
|
|
viewport.height = static_cast<float>(dim * std::pow(0.5f, m));
|
|
vkCmdSetViewport(cmdBuf, 0, 1, &viewport);
|
|
// Render scene from cube face's point of view
|
|
vkCmdBeginRenderPass(cmdBuf, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
|
|
|
|
// Update shader push constant block
|
|
prefilterPushBlock.mvp = glm::perspective((float)(M_PI / 2.0), 1.0f, 0.1f, 512.0f) * matrices[f];
|
|
|
|
vkCmdPushConstants(cmdBuf, pipelinelayout, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0, sizeof(PrefilterPushBlock), &prefilterPushBlock);
|
|
vkCmdBindPipeline(cmdBuf, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
|
|
vkCmdBindDescriptorSets(cmdBuf, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelinelayout, 0, 1, &descriptorset, 0, nullptr);
|
|
skyboxModel.draw(cmdBuf, pipelinelayout);
|
|
vkCmdEndRenderPass(cmdBuf);
|
|
|
|
vks::tools::setImageLayout(
|
|
cmdBuf,
|
|
offscreen.image,
|
|
VK_IMAGE_ASPECT_COLOR_BIT,
|
|
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
|
|
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
|
|
|
|
VkImageCopy copyRegion{};
|
|
copyRegion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
copyRegion.srcSubresource.baseArrayLayer = 0;
|
|
copyRegion.srcSubresource.mipLevel = 0;
|
|
copyRegion.srcSubresource.layerCount = 1;
|
|
copyRegion.srcOffset = { 0, 0, 0 };
|
|
|
|
copyRegion.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
copyRegion.dstSubresource.baseArrayLayer = f;
|
|
copyRegion.dstSubresource.mipLevel = m;
|
|
copyRegion.dstSubresource.layerCount = 1;
|
|
copyRegion.dstOffset = { 0, 0, 0 };
|
|
|
|
copyRegion.extent.width = static_cast<uint32_t>(viewport.width);
|
|
copyRegion.extent.height = static_cast<uint32_t>(viewport.height);
|
|
copyRegion.extent.depth = 1;
|
|
|
|
vkCmdCopyImage(
|
|
cmdBuf,
|
|
offscreen.image,
|
|
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
|
|
ibltextures.prefilteredCube.image,
|
|
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
|
|
1,
|
|
©Region);
|
|
|
|
//Reset frame buffer image layout
|
|
vks::tools::setImageLayout(
|
|
cmdBuf,
|
|
offscreen.image,
|
|
VK_IMAGE_ASPECT_COLOR_BIT,
|
|
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
|
|
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
|
|
}
|
|
}
|
|
|
|
//Set format shader read
|
|
vks::tools::setImageLayout(
|
|
cmdBuf,
|
|
ibltextures.prefilteredCube.image,
|
|
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
|
|
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
|
|
subresourceRange);
|
|
|
|
vulkanDevice->flushCommandBuffer(cmdBuf, queue);
|
|
|
|
vkDestroyRenderPass(device, renderpass, nullptr);
|
|
vkDestroyFramebuffer(device, offscreen.framebuffer, nullptr);
|
|
vkFreeMemory(device, offscreen.memory, nullptr);
|
|
vkDestroyImageView(device, offscreen.view, nullptr);
|
|
vkDestroyImage(device, offscreen.image, nullptr);
|
|
vkDestroyDescriptorPool(device, descriptorpool, nullptr);
|
|
vkDestroyDescriptorSetLayout(device, descriptorsetlayout, nullptr);
|
|
vkDestroyPipeline(device, pipeline, nullptr);
|
|
vkDestroyPipelineLayout(device, pipelinelayout, nullptr);
|
|
|
|
auto tEnd = std::chrono::high_resolution_clock::now();
|
|
auto tDiff = std::chrono::duration<double, std::milli>(tEnd - tStart).count();
|
|
std::cout << "Generating pre-filtered enivornment cube with " << numMips << " mip levels took " << tDiff << " ms" << std::endl;
|
|
}
|
|
|
|
void VulkanExample::generateBRDFLUT()
|
|
{
|
|
auto tStart = std::chrono::high_resolution_clock::now();
|
|
|
|
constexpr VkFormat format = VK_FORMAT_R16G16_SFLOAT;
|
|
constexpr int32_t dim = 512;
|
|
|
|
// Image
|
|
VkImageCreateInfo imageCI = vks::initializers::imageCreateInfo();
|
|
imageCI.imageType = VK_IMAGE_TYPE_2D;
|
|
imageCI.format = format;
|
|
imageCI.extent.width = dim;
|
|
imageCI.extent.height = dim;
|
|
imageCI.extent.depth = 1;
|
|
imageCI.mipLevels = 1;
|
|
imageCI.arrayLayers = 1;
|
|
imageCI.samples = VK_SAMPLE_COUNT_1_BIT;
|
|
imageCI.tiling = VK_IMAGE_TILING_OPTIMAL;
|
|
imageCI.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
|
|
VK_CHECK_RESULT(vkCreateImage(device, &imageCI, nullptr, &ibltextures.lutBrdf.image));
|
|
VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo();
|
|
VkMemoryRequirements memReqs;
|
|
vkGetImageMemoryRequirements(device, ibltextures.lutBrdf.image, &memReqs);
|
|
memAlloc.allocationSize = memReqs.size;
|
|
memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
|
|
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &ibltextures.lutBrdf.deviceMemory));
|
|
VK_CHECK_RESULT(vkBindImageMemory(device, ibltextures.lutBrdf.image, ibltextures.lutBrdf.deviceMemory, 0));
|
|
|
|
// Image view
|
|
VkImageViewCreateInfo viewCI = vks::initializers::imageViewCreateInfo();
|
|
viewCI.viewType = VK_IMAGE_VIEW_TYPE_2D;
|
|
viewCI.format = format;
|
|
viewCI.subresourceRange = {};
|
|
viewCI.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
viewCI.subresourceRange.levelCount = 1;
|
|
viewCI.subresourceRange.layerCount = 1;
|
|
viewCI.image = ibltextures.lutBrdf.image;
|
|
VK_CHECK_RESULT(vkCreateImageView(device, &viewCI, nullptr, &ibltextures.lutBrdf.view));
|
|
|
|
// Sampler
|
|
VkSamplerCreateInfo samplerCI = vks::initializers::samplerCreateInfo();
|
|
samplerCI.magFilter = VK_FILTER_LINEAR;
|
|
samplerCI.minFilter = VK_FILTER_LINEAR;
|
|
samplerCI.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
|
|
samplerCI.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
|
|
samplerCI.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
|
|
samplerCI.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
|
|
samplerCI.minLod = 0.0f;
|
|
samplerCI.maxLod = 1.0f;
|
|
samplerCI.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
|
|
VK_CHECK_RESULT(vkCreateSampler(device, &samplerCI, nullptr, &ibltextures.lutBrdf.sampler));
|
|
|
|
ibltextures.lutBrdf.descriptor.imageView = ibltextures.lutBrdf.view;
|
|
ibltextures.lutBrdf.descriptor.sampler = ibltextures.lutBrdf.sampler;
|
|
ibltextures.lutBrdf.descriptor.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
|
|
ibltextures.lutBrdf.device = vulkanDevice;
|
|
|
|
// FB, Att, RP, Pipe, etc.
|
|
VkAttachmentDescription attDesc = {};
|
|
// Color attachment
|
|
attDesc.format = format;
|
|
attDesc.samples = VK_SAMPLE_COUNT_1_BIT;
|
|
attDesc.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
|
|
attDesc.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
|
|
attDesc.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
|
|
attDesc.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
|
|
attDesc.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
|
|
attDesc.finalLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
|
|
VkAttachmentReference colorReference = { 0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL };
|
|
|
|
VkSubpassDescription subpassDescription = {};
|
|
subpassDescription.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
|
|
subpassDescription.colorAttachmentCount = 1;
|
|
subpassDescription.pColorAttachments = &colorReference;
|
|
|
|
// Use subpass dependencies for layout transitions
|
|
std::array<VkSubpassDependency, 2> dependencies;
|
|
dependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL;
|
|
dependencies[0].dstSubpass = 0;
|
|
dependencies[0].srcStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
|
|
dependencies[0].dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
|
|
dependencies[0].srcAccessMask = VK_ACCESS_MEMORY_READ_BIT;
|
|
dependencies[0].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
|
|
dependencies[0].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
|
|
dependencies[1].srcSubpass = 0;
|
|
dependencies[1].dstSubpass = VK_SUBPASS_EXTERNAL;
|
|
dependencies[1].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
|
|
dependencies[1].dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
|
|
dependencies[1].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
|
|
dependencies[1].dstAccessMask = VK_ACCESS_MEMORY_READ_BIT;
|
|
dependencies[1].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
|
|
|
|
// Create the actual renderpass
|
|
VkRenderPassCreateInfo renderPassCI = vks::initializers::renderPassCreateInfo();
|
|
renderPassCI.attachmentCount = 1;
|
|
renderPassCI.pAttachments = &attDesc;
|
|
renderPassCI.subpassCount = 1;
|
|
renderPassCI.pSubpasses = &subpassDescription;
|
|
renderPassCI.dependencyCount = 2;
|
|
renderPassCI.pDependencies = dependencies.data();
|
|
|
|
VkRenderPass renderpass;
|
|
VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassCI, nullptr, &renderpass));
|
|
|
|
VkFramebufferCreateInfo framebufferCI = vks::initializers::framebufferCreateInfo();
|
|
framebufferCI.renderPass = renderpass;
|
|
framebufferCI.attachmentCount = 1;
|
|
framebufferCI.pAttachments = &ibltextures.lutBrdf.view;
|
|
framebufferCI.width = dim;
|
|
framebufferCI.height = dim;
|
|
framebufferCI.layers = 1;
|
|
|
|
VkFramebuffer framebuffer;
|
|
VK_CHECK_RESULT(vkCreateFramebuffer(device, &framebufferCI, nullptr, &framebuffer));
|
|
|
|
// Descriptors
|
|
VkDescriptorSetLayout descriptorsetlayout;
|
|
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {};
|
|
VkDescriptorSetLayoutCreateInfo descriptorsetlayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
|
|
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorsetlayoutCI, nullptr, &descriptorsetlayout));
|
|
|
|
// Descriptor Pool
|
|
std::vector<VkDescriptorPoolSize> poolSizes = { vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1) };
|
|
VkDescriptorPoolCreateInfo descriptorPoolCI = vks::initializers::descriptorPoolCreateInfo(poolSizes, 2);
|
|
VkDescriptorPool descriptorpool;
|
|
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolCI, nullptr, &descriptorpool));
|
|
|
|
// Descriptor sets
|
|
VkDescriptorSet descriptorset;
|
|
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorpool, &descriptorsetlayout, 1);
|
|
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorset));
|
|
|
|
// Pipeline layout
|
|
VkPipelineLayout pipelinelayout;
|
|
VkPipelineLayoutCreateInfo pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(&descriptorsetlayout, 1);
|
|
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelinelayout));
|
|
|
|
// Pipeline
|
|
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
|
|
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE);
|
|
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
|
|
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
|
|
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_FALSE, VK_FALSE, VK_COMPARE_OP_LESS_OR_EQUAL);
|
|
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1);
|
|
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT);
|
|
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
|
|
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
|
|
VkPipelineVertexInputStateCreateInfo emptyInputState = vks::initializers::pipelineVertexInputStateCreateInfo();
|
|
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
|
|
|
|
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelinelayout, renderpass);
|
|
pipelineCI.pInputAssemblyState = &inputAssemblyState;
|
|
pipelineCI.pRasterizationState = &rasterizationState;
|
|
pipelineCI.pColorBlendState = &colorBlendState;
|
|
pipelineCI.pMultisampleState = &multisampleState;
|
|
pipelineCI.pViewportState = &viewportState;
|
|
pipelineCI.pDepthStencilState = &depthStencilState;
|
|
pipelineCI.pDynamicState = &dynamicState;
|
|
pipelineCI.stageCount = 2;
|
|
pipelineCI.pStages = shaderStages.data();
|
|
pipelineCI.pVertexInputState = &emptyInputState;
|
|
|
|
// Look-up-table (from BRDF) pipeline
|
|
shaderStages[0] = loadShader(getHomeworkShadersPath() + "homework1/genbrdflut.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
|
|
shaderStages[1] = loadShader(getHomeworkShadersPath() + "homework1/genbrdflut.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
|
|
VkPipeline pipeline;
|
|
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipeline));
|
|
|
|
// Render
|
|
VkClearValue clearValues[1];
|
|
clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 1.0f } };
|
|
|
|
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
|
|
renderPassBeginInfo.renderPass = renderpass;
|
|
renderPassBeginInfo.renderArea.extent.width = dim;
|
|
renderPassBeginInfo.renderArea.extent.height = dim;
|
|
renderPassBeginInfo.clearValueCount = 1;
|
|
renderPassBeginInfo.pClearValues = clearValues;
|
|
renderPassBeginInfo.framebuffer = framebuffer;
|
|
|
|
VkCommandBuffer cmdBuf = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
|
|
vkCmdBeginRenderPass(cmdBuf, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
|
|
VkViewport viewport = vks::initializers::viewport((float)dim, (float)dim, 0.0f, 1.0f);
|
|
VkRect2D scissor = vks::initializers::rect2D(dim, dim, 0, 0);
|
|
vkCmdSetViewport(cmdBuf, 0, 1, &viewport);
|
|
vkCmdSetScissor(cmdBuf, 0, 1, &scissor);
|
|
vkCmdBindPipeline(cmdBuf, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
|
|
vkCmdDraw(cmdBuf, 3, 1, 0, 0);
|
|
vkCmdEndRenderPass(cmdBuf);
|
|
vulkanDevice->flushCommandBuffer(cmdBuf, queue);
|
|
|
|
vkQueueWaitIdle(queue);
|
|
|
|
vkDestroyPipeline(device, pipeline, nullptr);
|
|
vkDestroyPipelineLayout(device, pipelinelayout, nullptr);
|
|
vkDestroyRenderPass(device, renderpass, nullptr);
|
|
vkDestroyFramebuffer(device, framebuffer, nullptr);
|
|
vkDestroyDescriptorSetLayout(device, descriptorsetlayout, nullptr);
|
|
vkDestroyDescriptorPool(device, descriptorpool, nullptr);
|
|
|
|
auto tEnd = std::chrono::high_resolution_clock::now();
|
|
auto tDiff = std::chrono::duration<double, std::milli>(tEnd - tStart).count();
|
|
std::cout << "Generating BRDF LUT took " << tDiff << " ms" << std::endl;
|
|
}
|
|
|
|
//-------------------------- pbr precompute start ----------------------------------
|
|
|
|
#pragma region pbr render pass setting
|
|
|
|
void VulkanExample::createAttachment(VkFormat format, VkImageUsageFlagBits usage, VulkanExample::FrameBufferAttachment* attachment, uint32_t width, uint32_t height)
|
|
{
|
|
VkImageAspectFlags aspectMask = 0;
|
|
VkImageUsageFlags imageUsage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
|
|
attachment->format = format;
|
|
if (usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT)
|
|
{
|
|
aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
imageUsage |= VK_IMAGE_USAGE_SAMPLED_BIT;
|
|
}
|
|
if (usage & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)
|
|
{
|
|
aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
|
|
if (format >= VK_FORMAT_D16_UNORM_S8_UINT)
|
|
aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT;
|
|
}
|
|
|
|
assert(aspectMask > 0);
|
|
|
|
VkImageCreateInfo image = vks::initializers::imageCreateInfo();
|
|
image.imageType = VK_IMAGE_TYPE_2D;
|
|
image.format = format;
|
|
image.extent.width = width;
|
|
image.extent.height = height;
|
|
image.extent.depth = 1;
|
|
image.mipLevels = 1;
|
|
image.arrayLayers = 1;
|
|
image.samples = VK_SAMPLE_COUNT_1_BIT;
|
|
image.tiling = VK_IMAGE_TILING_OPTIMAL;
|
|
image.usage = imageUsage | usage;
|
|
|
|
VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo();
|
|
VkMemoryRequirements memReqs;
|
|
|
|
VK_CHECK_RESULT(vkCreateImage(device, &image, nullptr, &attachment->image));
|
|
vkGetImageMemoryRequirements(device, attachment->image, &memReqs);
|
|
memAlloc.allocationSize = memReqs.size;
|
|
memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
|
|
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &attachment->deviceMemory));
|
|
VK_CHECK_RESULT(vkBindImageMemory(device, attachment->image, attachment->deviceMemory, 0));
|
|
|
|
VkImageViewCreateInfo imageView = vks::initializers::imageViewCreateInfo();
|
|
imageView.viewType = VK_IMAGE_VIEW_TYPE_2D;
|
|
imageView.format = format;
|
|
imageView.subresourceRange = {};
|
|
imageView.subresourceRange.aspectMask = aspectMask;
|
|
imageView.subresourceRange.baseMipLevel = 0;
|
|
imageView.subresourceRange.levelCount = 1;
|
|
imageView.subresourceRange.baseArrayLayer = 0;
|
|
imageView.subresourceRange.layerCount = 1;
|
|
imageView.image = attachment->image;
|
|
VK_CHECK_RESULT(vkCreateImageView(device, &imageView, nullptr, &attachment->imageView));
|
|
}
|
|
|
|
|
|
#pragma endregion
|
|
|
|
// ----------------------- pbr precompute end ---------------------------------------
|
|
|
|
|
|
|
|
|
|
void VulkanExample::prepare()
|
|
{
|
|
VulkanExampleBase::prepare();
|
|
loadAssets();
|
|
generateBRDFLUT();
|
|
generateIrradianceCubemap();
|
|
generatePrefilteredCubemap();
|
|
prepareUniformBuffers();
|
|
setupDescriptors();
|
|
preparePipelines();
|
|
buildCommandBuffers();
|
|
prepared = true;
|
|
}
|
|
|
|
void VulkanExample::render()
|
|
{
|
|
renderFrame();
|
|
if (camera.updated) {
|
|
updateUniformBuffers();
|
|
}
|
|
if (!paused)
|
|
{
|
|
glTFModel.updateAnimation(frameTimer,shaderData.skinSSBO);
|
|
}
|
|
}
|
|
|
|
void VulkanExample::viewChanged()
|
|
{
|
|
updateUniformBuffers();
|
|
}
|
|
|
|
void VulkanExample::OnUpdateUIOverlay(vks::UIOverlay *overlay)
|
|
{
|
|
if (overlay->header("Settings")) {
|
|
if (overlay->checkBox("Wireframe", &wireframe)) {
|
|
buildCommandBuffers();
|
|
}
|
|
}
|
|
if (overlay->header("Animation"))
|
|
{
|
|
overlay->checkBox("pause", &paused);
|
|
}
|
|
}
|
|
|
|
|
|
VULKAN_EXAMPLE_MAIN()
|