plumageRender/homework/homework1/homework1.h

226 lines
5.7 KiB
C++

#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <vector>
#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>
#define TINYGLTF_IMPLEMENTATION
#define STB_IMAGE_IMPLEMENTATION
#define TINYGLTF_NO_STB_IMAGE_WRITE
#ifdef VK_USE_PLATFORM_ANDROID_KHR
#define TINYGLTF_ANDROID_LOAD_FROM_ASSETS
#endif
#include "tiny_gltf.h"
#include "vulkanexamplebase.h"
#define ENABLE_VALIDATION false
// Contains everything required to render a glTF model in Vulkan
// This class is heavily simplified (compared to glTF's feature set) but retains the basic glTF structure
class VulkanglTFModel
{
public:
// The class requires some Vulkan objects so it can create it's own resources
vks::VulkanDevice* vulkanDevice;
VkQueue copyQueue;
// The vertex layout for the samples' model
struct Vertex {
glm::vec3 pos;
glm::vec3 normal;
glm::vec2 uv;
glm::vec3 color;
glm::vec3 jointIndices;
glm::vec3 jointWeights;
};
// Single vertex buffer for all primitives
struct Vertices {
VkBuffer buffer;
VkDeviceMemory memory;
} vertices;
// Single index buffer for all primitives
struct Indices {
int count;
VkBuffer buffer;
VkDeviceMemory memory;
} indices;
// The following structures roughly represent the glTF scene structure
// To keep things simple, they only contain those properties that are required for this sample
struct Node;
// A primitive contains the data for a single draw call
struct Primitive {
uint32_t firstIndex;
uint32_t indexCount;
int32_t materialIndex;
};
// Contains the node's (optional) geometry and can be made up of an arbitrary number of primitives
struct Mesh {
std::vector<Primitive> primitives;
};
// A node represents an object in the glTF scene graph
struct Node {
Node* parent;
uint32_t index;
std::vector<Node*> children;
Mesh mesh;
glm::vec3 translation{};
glm::vec3 scale{ 1.0f };
glm::quat rotation{};
int32_t skin = -1;
glm::mat4 getLocalMatrix();
glm::mat4 matrix;
};
// A glTF material stores information in e.g. the texture that is attached to it and colors
struct Material {
glm::vec4 baseColorFactor = glm::vec4(1.0f);
uint32_t baseColorTextureIndex;
};
// Contains the texture for a single glTF image
// Images may be reused by texture objects and are as such separated
struct Image {
vks::Texture2D texture;
// We also store (and create) a descriptor set that's used to access this texture from the fragment shader
VkDescriptorSet descriptorSet;
};
// A glTF texture stores a reference to the image and a sampler
// In this sample, we are only interested in the image
struct Texture {
int32_t imageIndex;
};
// structure of skin
struct Skin {
std::string name;
Node* skeletonRoot = nullptr;
std::vector<glm::mat4> inverseBindMatrices;
std::vector<Node*> joints;
vks::Buffer ssbo;
VkDescriptorSet descriptorSet;
};
struct AnimationSampler
{
std::string interpolation;
std::vector<float> inputs;
std::vector<glm::vec4> outputsVec4;
};
struct AnimationChannel
{
std::string path;
Node* node;
uint32_t samplerIndex;
};
struct Animation
{
std::string name;
std::vector<AnimationSampler> samplers;
std::vector<AnimationChannel> channels;
float start = std::numeric_limits<float>::max();
float end = std::numeric_limits<float>::min();
float currentTime = 0.0f;
};
/*
Model data
*/
std::vector<Image> images;
std::vector<Texture> textures;
std::vector<Material> materials;
std::vector<Node*> nodes;
std::vector<Skin> skins;
std::vector<Animation> animations;
uint32_t activeAnimation = 0;
//VulkanglTFModel();
~VulkanglTFModel();
void loadImages(tinygltf::Model& input);
void loadTextures(tinygltf::Model& input);
void loadMaterials(tinygltf::Model& input);
Node* findNode(Node* parent, uint32_t index);
Node* nodeFromIndex(uint32_t index);
void loadSkins(tinygltf::Model& input);
void loadAnimations(tinygltf::Model& input);
void loadNode(const tinygltf::Node& inputNode, const tinygltf::Model& input, VulkanglTFModel::Node* parent, uint32_t nodeIndex, std::vector<uint32_t>& indexBuffer, std::vector<VulkanglTFModel::Vertex>& vertexBuffer);
glm::mat4 getNodeMatrix(VulkanglTFModel::Node* node);
void updateJoints(VulkanglTFModel::Node* node);
void updateAnimation(float deltaTime);
void drawNode(VkCommandBuffer commandBuffer, VkPipelineLayout pipelineLayout, VulkanglTFModel::Node node);
void draw(VkCommandBuffer commandBuffer, VkPipelineLayout pipelineLayout);
};
class VulkanExample : public VulkanExampleBase
{
public:
bool wireframe = false;
VulkanglTFModel glTFModel;
struct ShaderData {
vks::Buffer buffer;
struct Values {
glm::mat4 projection;
glm::mat4 model;
glm::vec4 lightPos = glm::vec4(5.0f, 5.0f, 5.0f, 1.0f);
glm::vec4 viewPos;
} values;
} shaderData;
struct Pipelines {
VkPipeline solid;
VkPipeline wireframe = VK_NULL_HANDLE;
} pipelines;
VkPipelineLayout pipelineLayout;
struct DescriptorSetLayouts {
VkDescriptorSetLayout matrices;
VkDescriptorSetLayout textures;
VkDescriptorSetLayout jointMatrices;
} descriptorSetLayouts;
VkDescriptorSet descriptorSet;
VulkanExample();
~VulkanExample();
void loadglTFFile(std::string filename);
virtual void getEnabledFeatures();
void buildCommandBuffers();
void loadAssets();
void setupDescriptors();
void preparePipelines();
void prepareUniformBuffers();
void updateUniformBuffers();
void prepare();
virtual void render();
virtual void viewChanged();
virtual void OnUpdateUIOverlay(vks::UIOverlay* overlay);
};