plumageRender/base/VulkanDevice.cpp

597 lines
23 KiB
C++

/*
* Vulkan device class
*
* Encapsulates a physical Vulkan device and its logical representation
*
* Copyright (C) by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#if (defined(VK_USE_PLATFORM_IOS_MVK) || defined(VK_USE_PLATFORM_MACOS_MVK))
// SRS - Enable beta extensions and make VK_KHR_portability_subset visible
#define VK_ENABLE_BETA_EXTENSIONS
#endif
#include <VulkanDevice.h>
#include <unordered_set>
namespace vks
{
/**
* Default constructor
*
* @param physicalDevice Physical device that is to be used
*/
VulkanDevice::VulkanDevice(VkPhysicalDevice physicalDevice)
{
assert(physicalDevice);
this->physicalDevice = physicalDevice;
// Store Properties features, limits and properties of the physical device for later use
// Device properties also contain limits and sparse properties
vkGetPhysicalDeviceProperties(physicalDevice, &properties);
// Features should be checked by the examples before using them
vkGetPhysicalDeviceFeatures(physicalDevice, &features);
// Memory properties are used regularly for creating all kinds of buffers
vkGetPhysicalDeviceMemoryProperties(physicalDevice, &memoryProperties);
// Queue family properties, used for setting up requested queues upon device creation
uint32_t queueFamilyCount;
vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &queueFamilyCount, nullptr);
assert(queueFamilyCount > 0);
queueFamilyProperties.resize(queueFamilyCount);
vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &queueFamilyCount, queueFamilyProperties.data());
// Get list of supported extensions
uint32_t extCount = 0;
vkEnumerateDeviceExtensionProperties(physicalDevice, nullptr, &extCount, nullptr);
if (extCount > 0)
{
std::vector<VkExtensionProperties> extensions(extCount);
if (vkEnumerateDeviceExtensionProperties(physicalDevice, nullptr, &extCount, &extensions.front()) == VK_SUCCESS)
{
for (auto ext : extensions)
{
supportedExtensions.push_back(ext.extensionName);
}
}
}
}
/**
* Default destructor
*
* @note Frees the logical device
*/
VulkanDevice::~VulkanDevice()
{
if (commandPool)
{
vkDestroyCommandPool(logicalDevice, commandPool, nullptr);
}
if (logicalDevice)
{
vkDestroyDevice(logicalDevice, nullptr);
}
}
/**
* Get the index of a memory type that has all the requested property bits set
*
* @param typeBits Bit mask with bits set for each memory type supported by the resource to request for (from VkMemoryRequirements)
* @param properties Bit mask of properties for the memory type to request
* @param (Optional) memTypeFound Pointer to a bool that is set to true if a matching memory type has been found
*
* @return Index of the requested memory type
*
* @throw Throws an exception if memTypeFound is null and no memory type could be found that supports the requested properties
*/
uint32_t VulkanDevice::getMemoryType(uint32_t typeBits, VkMemoryPropertyFlags properties, VkBool32 *memTypeFound) const
{
for (uint32_t i = 0; i < memoryProperties.memoryTypeCount; i++)
{
if ((typeBits & 1) == 1)
{
if ((memoryProperties.memoryTypes[i].propertyFlags & properties) == properties)
{
if (memTypeFound)
{
*memTypeFound = true;
}
return i;
}
}
typeBits >>= 1;
}
if (memTypeFound)
{
*memTypeFound = false;
return 0;
}
else
{
throw std::runtime_error("Could not find a matching memory type");
}
}
/**
* Get the index of a queue family that supports the requested queue flags
* SRS - support VkQueueFlags parameter for requesting multiple flags vs. VkQueueFlagBits for a single flag only
*
* @param queueFlags Queue flags to find a queue family index for
*
* @return Index of the queue family index that matches the flags
*
* @throw Throws an exception if no queue family index could be found that supports the requested flags
*/
uint32_t VulkanDevice::getQueueFamilyIndex(VkQueueFlags queueFlags) const
{
// Dedicated queue for compute
// Try to find a queue family index that supports compute but not graphics
if ((queueFlags & VK_QUEUE_COMPUTE_BIT) == queueFlags)
{
for (uint32_t i = 0; i < static_cast<uint32_t>(queueFamilyProperties.size()); i++)
{
if ((queueFamilyProperties[i].queueFlags & VK_QUEUE_COMPUTE_BIT) && ((queueFamilyProperties[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) == 0))
{
return i;
}
}
}
// Dedicated queue for transfer
// Try to find a queue family index that supports transfer but not graphics and compute
if ((queueFlags & VK_QUEUE_TRANSFER_BIT) == queueFlags)
{
for (uint32_t i = 0; i < static_cast<uint32_t>(queueFamilyProperties.size()); i++)
{
if ((queueFamilyProperties[i].queueFlags & VK_QUEUE_TRANSFER_BIT) && ((queueFamilyProperties[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) == 0) && ((queueFamilyProperties[i].queueFlags & VK_QUEUE_COMPUTE_BIT) == 0))
{
return i;
}
}
}
// For other queue types or if no separate compute queue is present, return the first one to support the requested flags
for (uint32_t i = 0; i < static_cast<uint32_t>(queueFamilyProperties.size()); i++)
{
if ((queueFamilyProperties[i].queueFlags & queueFlags) == queueFlags)
{
return i;
}
}
throw std::runtime_error("Could not find a matching queue family index");
}
/**
* Create the logical device based on the assigned physical device, also gets default queue family indices
*
* @param enabledFeatures Can be used to enable certain features upon device creation
* @param pNextChain Optional chain of pointer to extension structures
* @param useSwapChain Set to false for headless rendering to omit the swapchain device extensions
* @param requestedQueueTypes Bit flags specifying the queue types to be requested from the device
*
* @return VkResult of the device creation call
*/
VkResult VulkanDevice::createLogicalDevice(VkPhysicalDeviceFeatures enabledFeatures, std::vector<const char*> enabledExtensions, void* pNextChain, bool useSwapChain, VkQueueFlags requestedQueueTypes)
{
// Desired queues need to be requested upon logical device creation
// Due to differing queue family configurations of Vulkan implementations this can be a bit tricky, especially if the application
// requests different queue types
std::vector<VkDeviceQueueCreateInfo> queueCreateInfos{};
// Get queue family indices for the requested queue family types
// Note that the indices may overlap depending on the implementation
const float defaultQueuePriority(0.0f);
// Graphics queue
if (requestedQueueTypes & VK_QUEUE_GRAPHICS_BIT)
{
queueFamilyIndices.graphics = getQueueFamilyIndex(VK_QUEUE_GRAPHICS_BIT);
VkDeviceQueueCreateInfo queueInfo{};
queueInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queueInfo.queueFamilyIndex = queueFamilyIndices.graphics;
queueInfo.queueCount = 1;
queueInfo.pQueuePriorities = &defaultQueuePriority;
queueCreateInfos.push_back(queueInfo);
}
else
{
queueFamilyIndices.graphics = 0;
}
// Dedicated compute queue
if (requestedQueueTypes & VK_QUEUE_COMPUTE_BIT)
{
queueFamilyIndices.compute = getQueueFamilyIndex(VK_QUEUE_COMPUTE_BIT);
if (queueFamilyIndices.compute != queueFamilyIndices.graphics)
{
// If compute family index differs, we need an additional queue create info for the compute queue
VkDeviceQueueCreateInfo queueInfo{};
queueInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queueInfo.queueFamilyIndex = queueFamilyIndices.compute;
queueInfo.queueCount = 1;
queueInfo.pQueuePriorities = &defaultQueuePriority;
queueCreateInfos.push_back(queueInfo);
}
}
else
{
// Else we use the same queue
queueFamilyIndices.compute = queueFamilyIndices.graphics;
}
// Dedicated transfer queue
if (requestedQueueTypes & VK_QUEUE_TRANSFER_BIT)
{
queueFamilyIndices.transfer = getQueueFamilyIndex(VK_QUEUE_TRANSFER_BIT);
if ((queueFamilyIndices.transfer != queueFamilyIndices.graphics) && (queueFamilyIndices.transfer != queueFamilyIndices.compute))
{
// If transfer family index differs, we need an additional queue create info for the transfer queue
VkDeviceQueueCreateInfo queueInfo{};
queueInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queueInfo.queueFamilyIndex = queueFamilyIndices.transfer;
queueInfo.queueCount = 1;
queueInfo.pQueuePriorities = &defaultQueuePriority;
queueCreateInfos.push_back(queueInfo);
}
}
else
{
// Else we use the same queue
queueFamilyIndices.transfer = queueFamilyIndices.graphics;
}
// Create the logical device representation
std::vector<const char*> deviceExtensions(enabledExtensions);
if (useSwapChain)
{
// If the device will be used for presenting to a display via a swapchain we need to request the swapchain extension
deviceExtensions.push_back(VK_KHR_SWAPCHAIN_EXTENSION_NAME);
}
VkDeviceCreateInfo deviceCreateInfo = {};
deviceCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
deviceCreateInfo.queueCreateInfoCount = static_cast<uint32_t>(queueCreateInfos.size());;
deviceCreateInfo.pQueueCreateInfos = queueCreateInfos.data();
deviceCreateInfo.pEnabledFeatures = &enabledFeatures;
// If a pNext(Chain) has been passed, we need to add it to the device creation info
VkPhysicalDeviceFeatures2 physicalDeviceFeatures2{};
if (pNextChain) {
physicalDeviceFeatures2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2;
physicalDeviceFeatures2.features = enabledFeatures;
physicalDeviceFeatures2.pNext = pNextChain;
deviceCreateInfo.pEnabledFeatures = nullptr;
deviceCreateInfo.pNext = &physicalDeviceFeatures2;
}
// Enable the debug marker extension if it is present (likely meaning a debugging tool is present)
if (extensionSupported(VK_EXT_DEBUG_MARKER_EXTENSION_NAME))
{
deviceExtensions.push_back(VK_EXT_DEBUG_MARKER_EXTENSION_NAME);
enableDebugMarkers = true;
}
#if (defined(VK_USE_PLATFORM_IOS_MVK) || defined(VK_USE_PLATFORM_MACOS_MVK)) && defined(VK_KHR_portability_subset)
// SRS - When running on iOS/macOS with MoltenVK and VK_KHR_portability_subset is defined and supported by the device, enable the extension
if (extensionSupported(VK_KHR_PORTABILITY_SUBSET_EXTENSION_NAME))
{
deviceExtensions.push_back(VK_KHR_PORTABILITY_SUBSET_EXTENSION_NAME);
}
#endif
if (deviceExtensions.size() > 0)
{
for (const char* enabledExtension : deviceExtensions)
{
if (!extensionSupported(enabledExtension)) {
std::cerr << "Enabled device extension \"" << enabledExtension << "\" is not present at device level\n";
}
}
deviceCreateInfo.enabledExtensionCount = (uint32_t)deviceExtensions.size();
deviceCreateInfo.ppEnabledExtensionNames = deviceExtensions.data();
}
this->enabledFeatures = enabledFeatures;
VkResult result = vkCreateDevice(physicalDevice, &deviceCreateInfo, nullptr, &logicalDevice);
if (result != VK_SUCCESS)
{
return result;
}
// Create a default command pool for graphics command buffers
commandPool = createCommandPool(queueFamilyIndices.graphics);
return result;
}
/**
* Create a buffer on the device
*
* @param usageFlags Usage flag bit mask for the buffer (i.e. index, vertex, uniform buffer)
* @param memoryPropertyFlags Memory properties for this buffer (i.e. device local, host visible, coherent)
* @param size Size of the buffer in byes
* @param buffer Pointer to the buffer handle acquired by the function
* @param memory Pointer to the memory handle acquired by the function
* @param data Pointer to the data that should be copied to the buffer after creation (optional, if not set, no data is copied over)
*
* @return VK_SUCCESS if buffer handle and memory have been created and (optionally passed) data has been copied
*/
VkResult VulkanDevice::createBuffer(VkBufferUsageFlags usageFlags, VkMemoryPropertyFlags memoryPropertyFlags, VkDeviceSize size, VkBuffer *buffer, VkDeviceMemory *memory, void *data)
{
// Create the buffer handle
VkBufferCreateInfo bufferCreateInfo = vks::initializers::bufferCreateInfo(usageFlags, size);
bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VK_CHECK_RESULT(vkCreateBuffer(logicalDevice, &bufferCreateInfo, nullptr, buffer));
// Create the memory backing up the buffer handle
VkMemoryRequirements memReqs;
VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo();
vkGetBufferMemoryRequirements(logicalDevice, *buffer, &memReqs);
memAlloc.allocationSize = memReqs.size;
// Find a memory type index that fits the properties of the buffer
memAlloc.memoryTypeIndex = getMemoryType(memReqs.memoryTypeBits, memoryPropertyFlags);
// If the buffer has VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT set we also need to enable the appropriate flag during allocation
VkMemoryAllocateFlagsInfoKHR allocFlagsInfo{};
if (usageFlags & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT) {
allocFlagsInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO_KHR;
allocFlagsInfo.flags = VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR;
memAlloc.pNext = &allocFlagsInfo;
}
VK_CHECK_RESULT(vkAllocateMemory(logicalDevice, &memAlloc, nullptr, memory));
// If a pointer to the buffer data has been passed, map the buffer and copy over the data
if (data != nullptr)
{
void *mapped;
VK_CHECK_RESULT(vkMapMemory(logicalDevice, *memory, 0, size, 0, &mapped));
memcpy(mapped, data, size);
// If host coherency hasn't been requested, do a manual flush to make writes visible
if ((memoryPropertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) == 0)
{
VkMappedMemoryRange mappedRange = vks::initializers::mappedMemoryRange();
mappedRange.memory = *memory;
mappedRange.offset = 0;
mappedRange.size = size;
vkFlushMappedMemoryRanges(logicalDevice, 1, &mappedRange);
}
vkUnmapMemory(logicalDevice, *memory);
}
// Attach the memory to the buffer object
VK_CHECK_RESULT(vkBindBufferMemory(logicalDevice, *buffer, *memory, 0));
return VK_SUCCESS;
}
/**
* Create a buffer on the device
*
* @param usageFlags Usage flag bit mask for the buffer (i.e. index, vertex, uniform buffer)
* @param memoryPropertyFlags Memory properties for this buffer (i.e. device local, host visible, coherent)
* @param buffer Pointer to a vk::Vulkan buffer object
* @param size Size of the buffer in bytes
* @param data Pointer to the data that should be copied to the buffer after creation (optional, if not set, no data is copied over)
*
* @return VK_SUCCESS if buffer handle and memory have been created and (optionally passed) data has been copied
*/
VkResult VulkanDevice::createBuffer(VkBufferUsageFlags usageFlags, VkMemoryPropertyFlags memoryPropertyFlags, vks::Buffer *buffer, VkDeviceSize size, void *data)
{
buffer->device = logicalDevice;
// Create the buffer handle
VkBufferCreateInfo bufferCreateInfo = vks::initializers::bufferCreateInfo(usageFlags, size);
VK_CHECK_RESULT(vkCreateBuffer(logicalDevice, &bufferCreateInfo, nullptr, &buffer->buffer));
// Create the memory backing up the buffer handle
VkMemoryRequirements memReqs;
VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo();
vkGetBufferMemoryRequirements(logicalDevice, buffer->buffer, &memReqs);
memAlloc.allocationSize = memReqs.size;
// Find a memory type index that fits the properties of the buffer
memAlloc.memoryTypeIndex = getMemoryType(memReqs.memoryTypeBits, memoryPropertyFlags);
// If the buffer has VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT set we also need to enable the appropriate flag during allocation
VkMemoryAllocateFlagsInfoKHR allocFlagsInfo{};
if (usageFlags & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT) {
allocFlagsInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO_KHR;
allocFlagsInfo.flags = VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR;
memAlloc.pNext = &allocFlagsInfo;
}
VK_CHECK_RESULT(vkAllocateMemory(logicalDevice, &memAlloc, nullptr, &buffer->memory));
buffer->alignment = memReqs.alignment;
buffer->size = size;
buffer->usageFlags = usageFlags;
buffer->memoryPropertyFlags = memoryPropertyFlags;
// If a pointer to the buffer data has been passed, map the buffer and copy over the data
if (data != nullptr)
{
VK_CHECK_RESULT(buffer->map());
memcpy(buffer->mapped, data, size);
if ((memoryPropertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) == 0)
buffer->flush();
buffer->unmap();
}
// Initialize a default descriptor that covers the whole buffer size
buffer->setupDescriptor();
// Attach the memory to the buffer object
return buffer->bind();
}
/**
* Copy buffer data from src to dst using VkCmdCopyBuffer
*
* @param src Pointer to the source buffer to copy from
* @param dst Pointer to the destination buffer to copy to
* @param queue Pointer
* @param copyRegion (Optional) Pointer to a copy region, if NULL, the whole buffer is copied
*
* @note Source and destination pointers must have the appropriate transfer usage flags set (TRANSFER_SRC / TRANSFER_DST)
*/
void VulkanDevice::copyBuffer(vks::Buffer *src, vks::Buffer *dst, VkQueue queue, VkBufferCopy *copyRegion)
{
assert(dst->size <= src->size);
assert(src->buffer);
VkCommandBuffer copyCmd = createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
VkBufferCopy bufferCopy{};
if (copyRegion == nullptr)
{
bufferCopy.size = src->size;
}
else
{
bufferCopy = *copyRegion;
}
vkCmdCopyBuffer(copyCmd, src->buffer, dst->buffer, 1, &bufferCopy);
flushCommandBuffer(copyCmd, queue);
}
/**
* Create a command pool for allocation command buffers from
*
* @param queueFamilyIndex Family index of the queue to create the command pool for
* @param createFlags (Optional) Command pool creation flags (Defaults to VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT)
*
* @note Command buffers allocated from the created pool can only be submitted to a queue with the same family index
*
* @return A handle to the created command buffer
*/
VkCommandPool VulkanDevice::createCommandPool(uint32_t queueFamilyIndex, VkCommandPoolCreateFlags createFlags)
{
VkCommandPoolCreateInfo cmdPoolInfo = {};
cmdPoolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
cmdPoolInfo.queueFamilyIndex = queueFamilyIndex;
cmdPoolInfo.flags = createFlags;
VkCommandPool cmdPool;
VK_CHECK_RESULT(vkCreateCommandPool(logicalDevice, &cmdPoolInfo, nullptr, &cmdPool));
return cmdPool;
}
/**
* Allocate a command buffer from the command pool
*
* @param level Level of the new command buffer (primary or secondary)
* @param pool Command pool from which the command buffer will be allocated
* @param (Optional) begin If true, recording on the new command buffer will be started (vkBeginCommandBuffer) (Defaults to false)
*
* @return A handle to the allocated command buffer
*/
VkCommandBuffer VulkanDevice::createCommandBuffer(VkCommandBufferLevel level, VkCommandPool pool, bool begin)
{
VkCommandBufferAllocateInfo cmdBufAllocateInfo = vks::initializers::commandBufferAllocateInfo(pool, level, 1);
VkCommandBuffer cmdBuffer;
VK_CHECK_RESULT(vkAllocateCommandBuffers(logicalDevice, &cmdBufAllocateInfo, &cmdBuffer));
// If requested, also start recording for the new command buffer
if (begin)
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VK_CHECK_RESULT(vkBeginCommandBuffer(cmdBuffer, &cmdBufInfo));
}
return cmdBuffer;
}
VkCommandBuffer VulkanDevice::createCommandBuffer(VkCommandBufferLevel level, bool begin)
{
return createCommandBuffer(level, commandPool, begin);
}
/**
* Finish command buffer recording and submit it to a queue
*
* @param commandBuffer Command buffer to flush
* @param queue Queue to submit the command buffer to
* @param pool Command pool on which the command buffer has been created
* @param free (Optional) Free the command buffer once it has been submitted (Defaults to true)
*
* @note The queue that the command buffer is submitted to must be from the same family index as the pool it was allocated from
* @note Uses a fence to ensure command buffer has finished executing
*/
void VulkanDevice::flushCommandBuffer(VkCommandBuffer commandBuffer, VkQueue queue, VkCommandPool pool, bool free)
{
if (commandBuffer == VK_NULL_HANDLE)
{
return;
}
VK_CHECK_RESULT(vkEndCommandBuffer(commandBuffer));
VkSubmitInfo submitInfo = vks::initializers::submitInfo();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &commandBuffer;
// Create fence to ensure that the command buffer has finished executing
VkFenceCreateInfo fenceInfo = vks::initializers::fenceCreateInfo(VK_FLAGS_NONE);
VkFence fence;
VK_CHECK_RESULT(vkCreateFence(logicalDevice, &fenceInfo, nullptr, &fence));
// Submit to the queue
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, fence));
// Wait for the fence to signal that command buffer has finished executing
VK_CHECK_RESULT(vkWaitForFences(logicalDevice, 1, &fence, VK_TRUE, DEFAULT_FENCE_TIMEOUT));
vkDestroyFence(logicalDevice, fence, nullptr);
if (free)
{
vkFreeCommandBuffers(logicalDevice, pool, 1, &commandBuffer);
}
}
void VulkanDevice::flushCommandBuffer(VkCommandBuffer commandBuffer, VkQueue queue, bool free)
{
return flushCommandBuffer(commandBuffer, queue, commandPool, free);
}
/**
* Check if an extension is supported by the (physical device)
*
* @param extension Name of the extension to check
*
* @return True if the extension is supported (present in the list read at device creation time)
*/
bool VulkanDevice::extensionSupported(std::string extension)
{
return (std::find(supportedExtensions.begin(), supportedExtensions.end(), extension) != supportedExtensions.end());
}
/**
* Select the best-fit depth format for this device from a list of possible depth (and stencil) formats
*
* @param checkSamplingSupport Check if the format can be sampled from (e.g. for shader reads)
*
* @return The depth format that best fits for the current device
*
* @throw Throws an exception if no depth format fits the requirements
*/
VkFormat VulkanDevice::getSupportedDepthFormat(bool checkSamplingSupport)
{
// All depth formats may be optional, so we need to find a suitable depth format to use
std::vector<VkFormat> depthFormats = { VK_FORMAT_D32_SFLOAT_S8_UINT, VK_FORMAT_D32_SFLOAT, VK_FORMAT_D24_UNORM_S8_UINT, VK_FORMAT_D16_UNORM_S8_UINT, VK_FORMAT_D16_UNORM };
for (auto& format : depthFormats)
{
VkFormatProperties formatProperties;
vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &formatProperties);
// Format must support depth stencil attachment for optimal tiling
if (formatProperties.optimalTilingFeatures & VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT)
{
if (checkSamplingSupport) {
if (!(formatProperties.optimalTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT)) {
continue;
}
}
return format;
}
}
throw std::runtime_error("Could not find a matching depth format");
}
};