plumageRender/VulkanTexture.hpp

756 lines
34 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

/*
* vulkan 贴图基础封装类
* 普通贴图使用stbi加载
* ktx格式cubeMap贴图使用ktx库加载
*/
#ifndef VULKANTEXTURE_HPP
#define VULKANTEXTURE_HPP
#include <algorithm>
#include <corecrt.h>
#include <cstdint>
#include <fstream>
#include <stdlib.h>
#include <string>
#include <vector>
#include "VulkanDevice.hpp"
#include "VulkanTools.h"
#include "ktx.h"
#include "stb_image.h"
#define GLM_ENABLE_EXPERIMENTAL
namespace vks
{
class Texture
{
public:
vks::VulkanDevice *device;
VkImage image = VK_NULL_HANDLE;
VkImageLayout imageLayout;
VkDeviceMemory deviceMemory;
VkImageView view;
uint32_t width, height;
uint32_t mipLevels;
uint32_t layerCount;
VkDescriptorImageInfo descriptor;
VkSampler sampler;
void updateDescriptor()
{
descriptor.sampler = sampler;
descriptor.imageView = view;
descriptor.imageLayout = imageLayout;
}
void destroy()
{
vkDestroyImageView(device->logicalDevice, view, nullptr);
vkDestroyImage(device->logicalDevice, image, nullptr);
if (sampler)
{
vkDestroySampler(device->logicalDevice, sampler, nullptr);
}
vkFreeMemory(device->logicalDevice, deviceMemory, nullptr);
}
private:
};
class Texture2D : public Texture
{
public:
void loadFromFile(
std::string filename,
VkFormat format,
vks::VulkanDevice *device,
VkQueue copyQueue,
VkImageUsageFlags imageUsageFlags = VK_IMAGE_USAGE_SAMPLED_BIT,
VkImageLayout imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL)
{
int texWidth, texHeight, texChannels;
unsigned char *texImageData = stbi_load(filename.c_str(), &texWidth, &texHeight, &texChannels, 0);
assert(texImageData == nullptr);
this->device = device;
width = static_cast<uint32_t>(texWidth);
height = static_cast<uint32_t>(texHeight);
// stb image 不自动生成mipmap层级使用公式计算
mipLevels = static_cast<uint32_t>(std::floor(std::log2(std::max(this->width, this->height)))) + 1;
size_t texImageSize = texWidth * texHeight * texChannels;
// Get device properites for the requested texture format
VkFormatProperties formatProperties;
vkGetPhysicalDeviceFormatProperties(device->physicalDevice, format, &formatProperties);
VkMemoryAllocateInfo memAllocInfo{};
memAllocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
VkMemoryRequirements memReqs;
// Use a separate command buffer for texture loading
VkCommandBuffer copyCmd = device->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
// Create a host-visible staging buffer that contains the raw image data
VkBuffer stagingBuffer;
VkDeviceMemory stagingMemory;
VkBufferCreateInfo bufferCreateInfo{};
bufferCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufferCreateInfo.size = texImageSize;
// This buffer is used as a transfer source for the buffer copy
bufferCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VK_CHECK_RESULT(vkCreateBuffer(device->logicalDevice, &bufferCreateInfo, nullptr, &stagingBuffer));
// Get memory requirements for the staging buffer (alignment, memory type bits)
vkGetBufferMemoryRequirements(device->logicalDevice, stagingBuffer, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
// Get memory type index for a host visible buffer
memAllocInfo.memoryTypeIndex = device->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device->logicalDevice, &memAllocInfo, nullptr, &stagingMemory));
VK_CHECK_RESULT(vkBindBufferMemory(device->logicalDevice, stagingBuffer, stagingMemory, 0));
// Copy texture data into staging buffer
uint8_t *data;
VK_CHECK_RESULT(vkMapMemory(device->logicalDevice, stagingMemory, 0, memReqs.size, 0, (void **)&data));
memcpy(data, texImageData, texImageSize);
vkUnmapMemory(device->logicalDevice, stagingMemory);
// clean up image data
stbi_image_free(texImageData);
// Create optimal tiled target image
VkImageCreateInfo imageCreateInfo{};
imageCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.mipLevels = 1;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageCreateInfo.extent = {width, height, 1};
imageCreateInfo.usage = imageUsageFlags;
// Ensure that the TRANSFER_DST bit is set for staging
if (!(imageCreateInfo.usage & VK_IMAGE_USAGE_TRANSFER_DST_BIT))
{
imageCreateInfo.usage |= VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
}
VK_CHECK_RESULT(vkCreateImage(device->logicalDevice, &imageCreateInfo, nullptr, &image));
vkGetImageMemoryRequirements(device->logicalDevice, image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
memAllocInfo.memoryTypeIndex = device->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device->logicalDevice, &memAllocInfo, nullptr, &deviceMemory));
VK_CHECK_RESULT(vkBindImageMemory(device->logicalDevice, image, deviceMemory, 0));
VkImageSubresourceRange subresourceRange = {};
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subresourceRange.baseMipLevel = 0;
subresourceRange.levelCount = 1; // 目前只处理第一级
subresourceRange.layerCount = 1;
// Image barrier for optimal image (target)
// Optimal image will be used as destination for the copy
{
VkImageMemoryBarrier imageMemoryBarrier{};
imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
imageMemoryBarrier.srcAccessMask = 0;
imageMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
imageMemoryBarrier.image = image;
imageMemoryBarrier.subresourceRange = subresourceRange;
vkCmdPipelineBarrier(copyCmd, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, 0, 0, nullptr, 0, nullptr, 1, &imageMemoryBarrier);
}
VkBufferImageCopy bufferCopyRegion = {};
bufferCopyRegion.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
bufferCopyRegion.imageSubresource.mipLevel = 0;
bufferCopyRegion.imageSubresource.baseArrayLayer = 0;
bufferCopyRegion.imageSubresource.layerCount = 1;
bufferCopyRegion.imageExtent.width = width;
bufferCopyRegion.imageExtent.height = height;
bufferCopyRegion.imageExtent.depth = 1;
bufferCopyRegion.bufferOffset = 0;
// Copy mip levels from staging buffer
vkCmdCopyBufferToImage(
copyCmd,
stagingBuffer,
image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
static_cast<uint32_t>(1),
&bufferCopyRegion);
generateMipmaps(copyCmd, format);
// Change texture image layout to shader read after all mip levels have been copied
this->imageLayout = imageLayout;
{
VkImageMemoryBarrier imageMemoryBarrier{};
imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
imageMemoryBarrier.newLayout = imageLayout;
imageMemoryBarrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
imageMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
imageMemoryBarrier.image = image;
imageMemoryBarrier.subresourceRange = subresourceRange;
vkCmdPipelineBarrier(copyCmd, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, 0, 0, nullptr, 0, nullptr, 1, &imageMemoryBarrier);
}
device->flushCommandBuffer(copyCmd, copyQueue);
// Clean up staging resources
vkFreeMemory(device->logicalDevice, stagingMemory, nullptr);
vkDestroyBuffer(device->logicalDevice, stagingBuffer, nullptr);
VkSamplerCreateInfo samplerCreateInfo{};
samplerCreateInfo.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
samplerCreateInfo.magFilter = VK_FILTER_LINEAR;
samplerCreateInfo.minFilter = VK_FILTER_LINEAR;
samplerCreateInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
samplerCreateInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT;
samplerCreateInfo.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT;
samplerCreateInfo.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT;
samplerCreateInfo.mipLodBias = 0.0f;
samplerCreateInfo.compareOp = VK_COMPARE_OP_NEVER;
samplerCreateInfo.minLod = 0.0f;
samplerCreateInfo.maxLod = (float)mipLevels;
samplerCreateInfo.maxAnisotropy = device->enabledFeatures.samplerAnisotropy ? device->properties.limits.maxSamplerAnisotropy : 1.0f;
samplerCreateInfo.anisotropyEnable = device->enabledFeatures.samplerAnisotropy;
samplerCreateInfo.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
VK_CHECK_RESULT(vkCreateSampler(device->logicalDevice, &samplerCreateInfo, nullptr, &sampler));
VkImageViewCreateInfo viewCreateInfo{};
viewCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
viewCreateInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
viewCreateInfo.format = format;
viewCreateInfo.components = {VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A};
viewCreateInfo.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1};
viewCreateInfo.subresourceRange.levelCount = mipLevels;
viewCreateInfo.image = image;
VK_CHECK_RESULT(vkCreateImageView(device->logicalDevice, &viewCreateInfo, nullptr, &view));
updateDescriptor();
}
void loadFromBuffer(
void *buffer,
VkDeviceSize bufferSize,
VkFormat format,
uint32_t width,
uint32_t height,
vks::VulkanDevice *device,
VkQueue copyQueue,
VkFilter filter = VK_FILTER_LINEAR,
VkImageUsageFlags imageUsageFlags = VK_IMAGE_USAGE_SAMPLED_BIT,
VkImageLayout imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL)
{
assert(buffer);
this->device = device;
width = width;
height = height;
mipLevels = 1;
VkMemoryAllocateInfo memAllocInfo{};
memAllocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
VkMemoryRequirements memReqs;
// Use a separate command buffer for texture loading
VkCommandBuffer copyCmd = device->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
// Create a host-visible staging buffer that contains the raw image data
VkBuffer stagingBuffer;
VkDeviceMemory stagingMemory;
VkBufferCreateInfo bufferCreateInfo{};
bufferCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufferCreateInfo.size = bufferSize;
// This buffer is used as a transfer source for the buffer copy
bufferCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VK_CHECK_RESULT(vkCreateBuffer(device->logicalDevice, &bufferCreateInfo, nullptr, &stagingBuffer));
// Get memory requirements for the staging buffer (alignment, memory type bits)
vkGetBufferMemoryRequirements(device->logicalDevice, stagingBuffer, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
// Get memory type index for a host visible buffer
memAllocInfo.memoryTypeIndex = device->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device->logicalDevice, &memAllocInfo, nullptr, &stagingMemory));
VK_CHECK_RESULT(vkBindBufferMemory(device->logicalDevice, stagingBuffer, stagingMemory, 0));
// Copy texture data into staging buffer
uint8_t *data;
VK_CHECK_RESULT(vkMapMemory(device->logicalDevice, stagingMemory, 0, memReqs.size, 0, (void **)&data));
memcpy(data, buffer, bufferSize);
vkUnmapMemory(device->logicalDevice, stagingMemory);
VkBufferImageCopy bufferCopyRegion = {};
bufferCopyRegion.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
bufferCopyRegion.imageSubresource.mipLevel = 0;
bufferCopyRegion.imageSubresource.baseArrayLayer = 0;
bufferCopyRegion.imageSubresource.layerCount = 1;
bufferCopyRegion.imageExtent.width = width;
bufferCopyRegion.imageExtent.height = height;
bufferCopyRegion.imageExtent.depth = 1;
bufferCopyRegion.bufferOffset = 0;
// Create optimal tiled target image
VkImageCreateInfo imageCreateInfo{};
imageCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.mipLevels = mipLevels;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageCreateInfo.extent = {width, height, 1};
imageCreateInfo.usage = imageUsageFlags;
// Ensure that the TRANSFER_DST bit is set for staging
if (!(imageCreateInfo.usage & VK_IMAGE_USAGE_TRANSFER_DST_BIT))
{
imageCreateInfo.usage |= VK_IMAGE_USAGE_TRANSFER_DST_BIT;
}
VK_CHECK_RESULT(vkCreateImage(device->logicalDevice, &imageCreateInfo, nullptr, &image));
vkGetImageMemoryRequirements(device->logicalDevice, image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
memAllocInfo.memoryTypeIndex = device->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device->logicalDevice, &memAllocInfo, nullptr, &deviceMemory));
VK_CHECK_RESULT(vkBindImageMemory(device->logicalDevice, image, deviceMemory, 0));
VkImageSubresourceRange subresourceRange = {};
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subresourceRange.baseMipLevel = 0;
subresourceRange.levelCount = mipLevels;
subresourceRange.layerCount = 1;
{
VkImageMemoryBarrier imageMemoryBarrier{};
imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
imageMemoryBarrier.srcAccessMask = 0;
imageMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
imageMemoryBarrier.image = image;
imageMemoryBarrier.subresourceRange = subresourceRange;
vkCmdPipelineBarrier(copyCmd, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, 0, 0, nullptr, 0, nullptr, 1, &imageMemoryBarrier);
}
vkCmdCopyBufferToImage(
copyCmd,
stagingBuffer,
image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1,
&bufferCopyRegion);
this->imageLayout = imageLayout;
{
VkImageMemoryBarrier imageMemoryBarrier{};
imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
imageMemoryBarrier.newLayout = imageLayout;
imageMemoryBarrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
imageMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
imageMemoryBarrier.image = image;
imageMemoryBarrier.subresourceRange = subresourceRange;
vkCmdPipelineBarrier(copyCmd, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, 0, 0, nullptr, 0, nullptr, 1, &imageMemoryBarrier);
}
device->flushCommandBuffer(copyCmd, copyQueue);
// Clean up staging resources
vkFreeMemory(device->logicalDevice, stagingMemory, nullptr);
vkDestroyBuffer(device->logicalDevice, stagingBuffer, nullptr);
// Create sampler
VkSamplerCreateInfo samplerCreateInfo = {};
samplerCreateInfo.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
samplerCreateInfo.magFilter = filter;
samplerCreateInfo.minFilter = filter;
samplerCreateInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
samplerCreateInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT;
samplerCreateInfo.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT;
samplerCreateInfo.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT;
samplerCreateInfo.mipLodBias = 0.0f;
samplerCreateInfo.compareOp = VK_COMPARE_OP_NEVER;
samplerCreateInfo.minLod = 0.0f;
samplerCreateInfo.maxLod = 0.0f;
samplerCreateInfo.maxAnisotropy = 1.0f;
VK_CHECK_RESULT(vkCreateSampler(device->logicalDevice, &samplerCreateInfo, nullptr, &sampler));
// Create image view
VkImageViewCreateInfo viewCreateInfo = {};
viewCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
viewCreateInfo.pNext = NULL;
viewCreateInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
viewCreateInfo.format = format;
viewCreateInfo.components = {VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A};
viewCreateInfo.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1};
viewCreateInfo.subresourceRange.levelCount = 1;
viewCreateInfo.image = image;
VK_CHECK_RESULT(vkCreateImageView(device->logicalDevice, &viewCreateInfo, nullptr, &view));
// Update descriptor image info member that can be used for setting up descriptor sets
updateDescriptor();
}
private:
void generateMipmaps(VkCommandBuffer commandBuffer, VkFormat format)
{
VkFormatProperties formatProperties;
vkGetPhysicalDeviceFormatProperties(device->physicalDevice, format, &formatProperties);
if (!(formatProperties.optimalTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT))
{
throw std::runtime_error("Texture image format does not support linear blitting!");
}
VkImageMemoryBarrier imageMemoryBarrier{};
imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imageMemoryBarrier.image = image;
imageMemoryBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
imageMemoryBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
imageMemoryBarrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
imageMemoryBarrier.subresourceRange.layerCount = 1;
imageMemoryBarrier.subresourceRange.levelCount = 1;
uint32_t mipWidth = width;
uint32_t mipHeight = height;
for (uint32_t i = 1; i < mipLevels; i++)
{
imageMemoryBarrier.subresourceRange.baseMipLevel = i - 1;
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
imageMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
imageMemoryBarrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
vkCmdPipelineBarrier(commandBuffer,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
0,
0,
nullptr,
0,
nullptr,
1,
&imageMemoryBarrier);
VkImageBlit blit{};
blit.srcOffsets[0] = {0, 0, 0};
blit.srcOffsets[1] = {static_cast<int32_t>(mipWidth), static_cast<int32_t>(mipHeight), 1};
blit.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
blit.srcSubresource.mipLevel = i - 1;
blit.srcSubresource.baseArrayLayer = 0;
blit.srcSubresource.layerCount = 1;
blit.dstOffsets[0] = {0, 0, 0};
int32_t dstOffsetX = 1;
int32_t dstOffsetY = 1;
if (mipWidth > 1)
{
dstOffsetX = static_cast<int32_t>(mipWidth / 2);
}
if (mipHeight > 1)
{
dstOffsetY = static_cast<int32_t>(mipHeight / 2);
}
blit.dstOffsets[1] = {dstOffsetX, dstOffsetY, 1};
blit.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
blit.dstSubresource.mipLevel = i;
blit.dstSubresource.baseArrayLayer = 0;
blit.dstSubresource.layerCount = 1;
vkCmdBlitImage(commandBuffer,
image,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1,
&blit, VK_FILTER_LINEAR);
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
imageMemoryBarrier.srcAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
imageMemoryBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
vkCmdPipelineBarrier(commandBuffer,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
0,
0,
nullptr,
0,
nullptr,
1,
&imageMemoryBarrier);
if (mipWidth > 1)
{
mipWidth = mipWidth / 2;
}
if (mipHeight > 1)
{
mipHeight = mipHeight / 2;
}
}
imageMemoryBarrier.subresourceRange.baseMipLevel = 0;
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
imageMemoryBarrier.newLayout = imageLayout;
imageMemoryBarrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
imageMemoryBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
imageMemoryBarrier.subresourceRange.levelCount = mipLevels;
vkCmdPipelineBarrier(commandBuffer,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
0,
0,
nullptr,
0,
nullptr,
1,
&imageMemoryBarrier);
}
};
class TextureCubeMap : public Texture
{
public:
void loadFromFile(
std::string filename,
VkFormat format,
vks::VulkanDevice *device,
VkQueue copyQueue,
VkImageUsageFlags imageUsageFlags = VK_IMAGE_USAGE_SAMPLED_BIT,
VkImageLayout imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL)
{
ktxTexture *cubeMapTexture = nullptr;
KTX_error_code ktxResult = ktxTexture_CreateFromNamedFile(filename.c_str(), KTX_TEXTURE_CREATE_LOAD_IMAGE_DATA_BIT, &cubeMapTexture);
if (ktxResult != KTX_SUCCESS)
{
throw std::runtime_error("Failed to load KTX texture");
}
this->device = device;
width = static_cast<uint32_t>(cubeMapTexture->baseWidth);
height = static_cast<uint32_t>(cubeMapTexture->baseHeight);
mipLevels = cubeMapTexture->numLevels;
layerCount = cubeMapTexture->numLayers;
VkMemoryAllocateInfo memAllocInfo{};
memAllocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
VkMemoryRequirements memReqs;
// Create a host-visible staging buffer that contains the raw image data
VkBuffer stagingBuffer;
VkDeviceMemory stagingMemory;
VkBufferCreateInfo bufferCreateInfo{};
bufferCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufferCreateInfo.size = cubeMapTexture->dataSize;
// This buffer is used as a transfer source for the buffer copy
bufferCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VK_CHECK_RESULT(vkCreateBuffer(device->logicalDevice, &bufferCreateInfo, nullptr, &stagingBuffer));
// Get memory requirements for the staging buffer (alignment, memory type bits)
vkGetBufferMemoryRequirements(device->logicalDevice, stagingBuffer, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
// Get memory type index for a host visible buffer
memAllocInfo.memoryTypeIndex = device->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device->logicalDevice, &memAllocInfo, nullptr, &stagingMemory));
VK_CHECK_RESULT(vkBindBufferMemory(device->logicalDevice, stagingBuffer, stagingMemory, 0));
// Copy texture data into staging buffer
uint8_t *data;
VK_CHECK_RESULT(vkMapMemory(device->logicalDevice, stagingMemory, 0, memReqs.size, 0, (void **)&data));
memcpy(data, ktxTexture_GetData(cubeMapTexture), cubeMapTexture->dataSize);
vkUnmapMemory(device->logicalDevice, stagingMemory);
// Setup buffer copy regions for each face including all of it's miplevels
std::vector<VkBufferImageCopy> bufferCopyRegions;
size_t offset = 0;
for (uint32_t face = 0; face < 6; face++)
{
for (uint32_t level = 0; level < mipLevels; level++)
{
ktx_size_t offset;
KTX_error_code result = ktxTexture_GetImageOffset(
cubeMapTexture,
level, // mip level
0, // array layer
face, // face
&offset);
if (result != KTX_SUCCESS)
{
ktxTexture_Destroy(cubeMapTexture);
throw std::runtime_error("Failed to get image offset from KTX texture");
}
VkBufferImageCopy bufferCopyRegion = {};
bufferCopyRegion.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
bufferCopyRegion.imageSubresource.mipLevel = level;
bufferCopyRegion.imageSubresource.baseArrayLayer = face;
bufferCopyRegion.imageSubresource.layerCount = 1;
uint32_t mipWidth = std::max(1u, width >> level);
uint32_t mipHeight = std::max(1u, height >> level);
bufferCopyRegion.imageExtent.width = mipWidth;
bufferCopyRegion.imageExtent.height = mipHeight;
bufferCopyRegion.imageExtent.depth = 1;
bufferCopyRegion.bufferOffset = offset;
bufferCopyRegions.push_back(bufferCopyRegion);
}
}
// Create optimal tiled target image
VkImageCreateInfo imageCreateInfo{};
imageCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.mipLevels = mipLevels;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageCreateInfo.extent = {width, height, 1};
imageCreateInfo.usage = imageUsageFlags;
// Ensure that the TRANSFER_DST bit is set for staging
if (!(imageCreateInfo.usage & VK_IMAGE_USAGE_TRANSFER_DST_BIT))
{
imageCreateInfo.usage |= VK_IMAGE_USAGE_TRANSFER_DST_BIT;
}
// Cube faces count as array layers in Vulkan
imageCreateInfo.arrayLayers = 6;
// This flag is required for cube map images
imageCreateInfo.flags = VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
VK_CHECK_RESULT(vkCreateImage(device->logicalDevice, &imageCreateInfo, nullptr, &image));
vkGetImageMemoryRequirements(device->logicalDevice, image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
memAllocInfo.memoryTypeIndex = device->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device->logicalDevice, &memAllocInfo, nullptr, &deviceMemory));
VK_CHECK_RESULT(vkBindImageMemory(device->logicalDevice, image, deviceMemory, 0));
// Use a separate command buffer for texture loading
VkCommandBuffer copyCmd = device->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
// Image barrier for optimal image (target)
// Set initial layout for all array layers (faces) of the optimal (target) tiled texture
VkImageSubresourceRange subresourceRange = {};
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subresourceRange.baseMipLevel = 0;
subresourceRange.levelCount = mipLevels;
subresourceRange.layerCount = 6;
{
VkImageMemoryBarrier imageMemoryBarrier{};
imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
imageMemoryBarrier.srcAccessMask = 0;
imageMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
imageMemoryBarrier.image = image;
imageMemoryBarrier.subresourceRange = subresourceRange;
vkCmdPipelineBarrier(copyCmd, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, 0, 0, nullptr, 0, nullptr, 1, &imageMemoryBarrier);
}
// Copy the cube map faces from the staging buffer to the optimal tiled image
vkCmdCopyBufferToImage(
copyCmd,
stagingBuffer,
image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
static_cast<uint32_t>(bufferCopyRegions.size()),
bufferCopyRegions.data());
// Change texture image layout to shader read after all faces have been copied
this->imageLayout = imageLayout;
{
VkImageMemoryBarrier imageMemoryBarrier{};
imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
imageMemoryBarrier.newLayout = imageLayout;
imageMemoryBarrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
imageMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
imageMemoryBarrier.image = image;
imageMemoryBarrier.subresourceRange = subresourceRange;
vkCmdPipelineBarrier(copyCmd, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, 0, 0, nullptr, 0, nullptr, 1, &imageMemoryBarrier);
}
device->flushCommandBuffer(copyCmd, copyQueue);
// Create sampler
VkSamplerCreateInfo samplerCreateInfo{};
samplerCreateInfo.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
samplerCreateInfo.magFilter = VK_FILTER_LINEAR;
samplerCreateInfo.minFilter = VK_FILTER_LINEAR;
samplerCreateInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
samplerCreateInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samplerCreateInfo.addressModeV = samplerCreateInfo.addressModeU;
samplerCreateInfo.addressModeW = samplerCreateInfo.addressModeU;
samplerCreateInfo.mipLodBias = 0.0f;
samplerCreateInfo.maxAnisotropy = device->enabledFeatures.samplerAnisotropy ? device->properties.limits.maxSamplerAnisotropy : 1.0f;
samplerCreateInfo.anisotropyEnable = device->enabledFeatures.samplerAnisotropy;
samplerCreateInfo.compareOp = VK_COMPARE_OP_NEVER;
samplerCreateInfo.minLod = 0.0f;
samplerCreateInfo.maxLod = (float)mipLevels;
samplerCreateInfo.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
VK_CHECK_RESULT(vkCreateSampler(device->logicalDevice, &samplerCreateInfo, nullptr, &sampler));
// Create image view
VkImageViewCreateInfo viewCreateInfo{};
viewCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
viewCreateInfo.viewType = VK_IMAGE_VIEW_TYPE_CUBE;
viewCreateInfo.format = format;
viewCreateInfo.components = {VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A};
viewCreateInfo.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1};
viewCreateInfo.subresourceRange.layerCount = 6;
viewCreateInfo.subresourceRange.levelCount = mipLevels;
viewCreateInfo.image = image;
VK_CHECK_RESULT(vkCreateImageView(device->logicalDevice, &viewCreateInfo, nullptr, &view));
// Clean up staging resources
vkFreeMemory(device->logicalDevice, stagingMemory, nullptr);
vkDestroyBuffer(device->logicalDevice, stagingBuffer, nullptr);
// Update descriptor image info member that can be used for setting up descriptor sets
updateDescriptor();
}
};
} // namespace vks
#endif