plumageRender/enc_temp_folder/b77599a76dd1293b893934e2c8a.../render.cpp

1675 lines
81 KiB
C++

/*
* Vulkan Example - glTF scene loading and rendering
*
* Copyright (C) 2020-2022 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
/*
* Shows how to load and display a simple scene from a glTF file
* Note that this isn't a complete glTF loader and only basic functions are shown here
* This means no complex materials, no animations, no skins, etc.
* For details on how glTF 2.0 works, see the official spec at https://github.com/KhronosGroup/glTF/tree/master/specification/2.0
*
* Other samples will load models using a dedicated model loader with more features (see base/VulkanglTFModel.hpp)
*
* If you are looking for a complete glTF implementation, check out https://github.com/SaschaWillems/Vulkan-glTF-PBR/
*/
#ifndef TINYGLTF_IMPLEMENTATION
#define TINYGLTF_IMPLEMENTATION
#endif
#ifndef STB_IMAGE_IMPLEMENTATION
#define STB_IMAGE_IMPLEMENTATION
#endif
#ifndef TINYGLTF_NO_STB_IMAGE_WRITE
#define TINYGLTF_NO_STB_IMAGE_WRITE
#endif
#include "render.h"
#include "GUIFunction.h"
VulkanExample::VulkanExample():
VulkanExampleBase(ENABLE_VALIDATION)
{
title = "render";
camera.type = Camera::CameraType::lookat;
camera.flipY = true;
camera.setPosition(glm::vec3(0.0f, -0.1f, -1.0f));
camera.setRotation(glm::vec3(0.0f, 45.0f, 0.0f));
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f);
}
void VulkanExample::getEnabledFeatures()
{
// Fill mode non solid is required for wireframe display
if (deviceFeatures.fillModeNonSolid) {
enabledFeatures.fillModeNonSolid = VK_TRUE;
};
}
void VulkanExample::setupFrameBuffer()
{
VulkanExampleBase::setupFrameBuffer();
if (pbrFrameBuffer.bCreate && (pbrFrameBuffer.fbo.width != width || pbrFrameBuffer.fbo.height != height))
{
pbrFrameBuffer.color.destroy(device);
pbrFrameBuffer.depth.destroy(device);
pbrFrameBuffer.fbo.destroy(device);
vkDestroySampler(device, colorSampler, nullptr);
}
//Create image color attachment
pbrFrameBuffer.fbo.setSize(width, height);
VkFormat attDepthFormat;
VkBool32 validDepthFormat = vks::tools::getSupportedDepthFormat(physicalDevice, &attDepthFormat);
assert(validDepthFormat);
createAttachment(VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, &pbrFrameBuffer.color, width, height);
createAttachment(attDepthFormat, VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, &pbrFrameBuffer.depth, width, height);
{
std::array<VkAttachmentDescription, 2> attachs = {};
for (uint32_t i = 0; i < static_cast<uint32_t>(attachs.size()); ++i)
{
attachs[i].samples = VK_SAMPLE_COUNT_1_BIT;
attachs[i].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attachs[i].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachs[i].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachs[i].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachs[i].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attachs[i].finalLayout = i == 1 ? VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL : VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
}
attachs[0].format = pbrFrameBuffer.color.format;
attachs[1].format = pbrFrameBuffer.depth.format;
VkAttachmentReference colorReference = {};
colorReference.attachment = 0;
colorReference.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
VkAttachmentReference depthReference = {};
depthReference.attachment = 1;
depthReference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
VkSubpassDescription subpass = {};
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass.pColorAttachments = &colorReference;
subpass.colorAttachmentCount = 1;
subpass.pDepthStencilAttachment = &depthReference;
std::array<VkSubpassDependency, 2> dependencies;
//To test src 0
dependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL;
dependencies[0].dstSubpass = 0;
dependencies[0].srcStageMask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
dependencies[0].dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependencies[0].srcAccessMask = VK_ACCESS_SHADER_READ_BIT;
dependencies[0].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
dependencies[0].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
dependencies[1].srcSubpass = 0;
dependencies[1].dstSubpass = VK_SUBPASS_EXTERNAL;
dependencies[1].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependencies[1].dstStageMask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
dependencies[1].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
dependencies[1].dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
dependencies[1].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
VkRenderPassCreateInfo renderPassCI = {};
renderPassCI.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
renderPassCI.pAttachments = attachs.data();
renderPassCI.attachmentCount = static_cast<uint32_t>(attachs.size());
renderPassCI.pSubpasses = &subpass;
renderPassCI.subpassCount = 1;
renderPassCI.pDependencies = dependencies.data();
renderPassCI.dependencyCount = 2;
VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassCI, nullptr, &pbrFrameBuffer.fbo.renderPass));
//Create FBO
VkImageView attachments[2] = { pbrFrameBuffer.color.imageView, pbrFrameBuffer.depth.imageView };
VkFramebufferCreateInfo fbufCreateInfo = vks::initializers::framebufferCreateInfo();
fbufCreateInfo.renderPass = pbrFrameBuffer.fbo.renderPass;
fbufCreateInfo.pAttachments = attachments;
fbufCreateInfo.attachmentCount = 2;
fbufCreateInfo.width = pbrFrameBuffer.fbo.width;
fbufCreateInfo.height = pbrFrameBuffer.fbo.height;
fbufCreateInfo.layers = 1;
VK_CHECK_RESULT(vkCreateFramebuffer(device, &fbufCreateInfo, nullptr, &pbrFrameBuffer.fbo.frameBuffer));
}
//Create Image sampler
VkSamplerCreateInfo samplerCI = vks::initializers::samplerCreateInfo();
samplerCI.magFilter = VK_FILTER_NEAREST;
samplerCI.minFilter = VK_FILTER_NEAREST;
samplerCI.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
samplerCI.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samplerCI.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samplerCI.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
//samplerCI.mipLodBias = 0.0f;
//samplerCI.maxAnisotropy = 1.0f;
samplerCI.minLod = 0.0f;
samplerCI.maxLod = 1.0f;
samplerCI.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
VK_CHECK_RESULT(vkCreateSampler(device, &samplerCI, nullptr, &colorSampler));
if (tonemappingDescriptorSet != VK_NULL_HANDLE) //Bad logic
{
auto imageInfo = vks::initializers::descriptorImageInfo(colorSampler, pbrFrameBuffer.color.imageView, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(tonemappingDescriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &imageInfo);
vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr);
}
pbrFrameBuffer.bCreate = true;
}
void VulkanExample::buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[0].color = { { 0.25f, 0.25f, 0.25f, 1.0f } };
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = pbrFrameBuffer.fbo.renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
const VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
const VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
renderPassBeginInfo.framebuffer = pbrFrameBuffer.fbo.frameBuffer;
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
// Bind scene matrices descriptor to set 0
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.pbrLayout, 0, 1, &descriptorSet, 0, nullptr);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.pbrLayout, 6, 1, &skinDescriptorSet, 0, nullptr);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, wireframe ? pipelines.wireframe : pipelines.solid);
glTFModel.draw(drawCmdBuffers[i], pipelineLayouts.pbrLayout,false);
vkCmdEndRenderPass(drawCmdBuffers[i]);
{
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.framebuffer = VulkanExampleBase::frameBuffers[i];
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.tonemappingLayout, 0, 1, &tonemappingDescriptorSet, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.toneMapping);
vkCmdDraw(drawCmdBuffers[i], 3, 1, 0, 0);
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
}
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void VulkanExample::loadglTFFile(std::string filename, VulkanglTFModel& model, bool bSkyboxFlag = false)
{
tinygltf::Model glTFInput;
tinygltf::TinyGLTF gltfContext;
std::string error, warning;
this->device = device;
#if defined(__ANDROID__)
// On Android all assets are packed with the apk in a compressed form, so we need to open them using the asset manager
// We let tinygltf handle this, by passing the asset manager of our app
tinygltf::asset_manager = androidApp->activity->assetManager;
#endif
bool fileLoaded = gltfContext.LoadASCIIFromFile(&glTFInput, &error, &warning, filename);
// Pass some Vulkan resources required for setup and rendering to the glTF model loading class
model.vulkanDevice = vulkanDevice;
model.copyQueue = queue;
std::vector<uint32_t> indexBuffer;
std::vector<VulkanglTFModel::Vertex> vertexBuffer;
if (fileLoaded) {
model.nodeCount = static_cast<uint32_t>(glTFInput.nodes.size());
model.loadImages(glTFInput);
model.loadMaterials(glTFInput);
model.loadTextures(glTFInput);
const tinygltf::Scene& scene = glTFInput.scenes[0];
for (size_t i = 0; i < scene.nodes.size(); i++) {
const tinygltf::Node node = glTFInput.nodes[scene.nodes[i]];
model.loadNode(node, glTFInput, nullptr, scene.nodes[i], indexBuffer, vertexBuffer);
}
model.loadAnimations(glTFInput);
}
else {
vks::tools::exitFatal("Could not open the glTF file.\n\nThe file is part of the additional asset pack.\n\nRun \"download_assets.py\" in the repository root to download the latest version.", -1);
return;
}
// Create and upload vertex and index buffer
// We will be using one single vertex buffer and one single index buffer for the whole glTF scene
// Primitives (of the glTF model) will then index into these using index offsets
size_t vertexBufferSize = vertexBuffer.size() * sizeof(VulkanglTFModel::Vertex);
size_t indexBufferSize = indexBuffer.size() * sizeof(uint32_t);
model.indices.count = static_cast<uint32_t>(indexBuffer.size());
struct StagingBuffer {
VkBuffer buffer;
VkDeviceMemory memory;
} vertexStaging, indexStaging;
// Create host visible staging buffers (source)
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
vertexBufferSize,
&vertexStaging.buffer,
&vertexStaging.memory,
vertexBuffer.data()));
// Index data
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
indexBufferSize,
&indexStaging.buffer,
&indexStaging.memory,
indexBuffer.data()));
// Create device local buffers (target)
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
vertexBufferSize,
&model.vertices.buffer,
&model.vertices.memory));
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
indexBufferSize,
&model.indices.buffer,
&model.indices.memory));
// Copy data from staging buffers (host) do device local buffer (gpu)
VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
VkBufferCopy copyRegion = {};
copyRegion.size = vertexBufferSize;
vkCmdCopyBuffer(
copyCmd,
vertexStaging.buffer,
model.vertices.buffer,
1,
&copyRegion);
copyRegion.size = indexBufferSize;
vkCmdCopyBuffer(
copyCmd,
indexStaging.buffer,
model.indices.buffer,
1,
&copyRegion);
vulkanDevice->flushCommandBuffer(copyCmd, queue, true);
// Free staging resources
vkDestroyBuffer(device, vertexStaging.buffer, nullptr);
vkFreeMemory(device, vertexStaging.memory, nullptr);
vkDestroyBuffer(device, indexStaging.buffer, nullptr);
vkFreeMemory(device, indexStaging.memory, nullptr);
}
void VulkanExample::loadAssets()
{
loadglTFFile(getAssetPath() + "buster_drone/busterDrone.gltf", glTFModel);
loadglTFFile(getAssetPath() + "models/cube.gltf", skyboxModel, true);
ibltextures.skyboxCube.loadFromFile(getAssetPath() + "textures/hdr/pisa_cube.ktx", VK_FORMAT_R16G16B16A16_SFLOAT, vulkanDevice, queue);
}
void VulkanExample::setupDescriptors()
{
/*
This sample uses separate descriptor sets (and layouts) for the matrices and materials (textures)
*/
//Descriptor Pool Alloc
{
std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 4),
// One combined image sampler per model image/texture
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, static_cast<uint32_t>(glTFModel.images.size())),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 4), // Add aditional sampler descriptor
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1)
};
// One set for matrices and one per model image/texture
const uint32_t maxSetCount = static_cast<uint32_t>(glTFModel.images.size()) + 6;
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, maxSetCount);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
}
// Descriptor set layout for passing matrices ---and precompute texture add in this descriptor
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
{
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0),
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1),
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 2),
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 3),
};
VkDescriptorSetLayoutCreateInfo descriptorSetLayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayouts.matrices));
VkDescriptorSetLayoutBinding materialBufferLayoutBinding = vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_FRAGMENT_BIT, 0);
descriptorSetLayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(&materialBufferLayoutBinding, 1);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayouts.materialUniform));
// Descriptor set layout for passing material textures
VkDescriptorSetLayoutBinding setLayoutBinding = vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 0);
descriptorSetLayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(&setLayoutBinding, 1);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayouts.textures));
setLayoutBinding = vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayouts.ssbo));
//Pbr pipeline layout
{
// Pipeline layout using both descriptor sets (set 0 = matrices, set 1 = material)
std::array<VkDescriptorSetLayout, 7> setLayouts =
{ descriptorSetLayouts.matrices,
descriptorSetLayouts.textures,
descriptorSetLayouts.textures,
descriptorSetLayouts.textures,
descriptorSetLayouts.textures,
descriptorSetLayouts.materialUniform,
descriptorSetLayouts.ssbo
};
VkPipelineLayoutCreateInfo pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(setLayouts.data(), static_cast<uint32_t>(setLayouts.size()));
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayouts.pbrLayout));
// Descriptor set for scene matrices
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.matrices, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
std::vector<VkWriteDescriptorSet> writeDescriptorSets =
{
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &shaderData.buffer.descriptor),
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &ibltextures.irradianceCube.descriptor),
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2, &ibltextures.lutBrdf.descriptor),
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 3, &ibltextures.prefilteredCube.descriptor),
};
vkUpdateDescriptorSets(device, 4, writeDescriptorSets.data(), 0, nullptr);
for (auto& material : glTFModel.materials)
{
const VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.materialUniform, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &material.materialData.descriptorSet));
VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(
material.materialData.descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &material.materialData.buffer.descriptor);
vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr);
}
// Descriptor sets for materials
for (auto& image : glTFModel.images) {
const VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.textures, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &image.descriptorSet));
VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(image.descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &image.texture.descriptor);
vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr);
}
{
const VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.ssbo, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &skinDescriptorSet));
VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(skinDescriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 0, &shaderData.skinSSBO.descriptor);
vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr);
}
}
//Tone Mapping pipeline layout
{
auto pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayouts.textures, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayouts.tonemappingLayout));
const VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.textures, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &tonemappingDescriptorSet));
auto imageInfo = vks::initializers::descriptorImageInfo(colorSampler, pbrFrameBuffer.color.imageView, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(tonemappingDescriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &imageInfo);
vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr);
}
}
void VulkanExample::preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationStateCI = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentStateCI = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendStateCI = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentStateCI);
VkPipelineDepthStencilStateCreateInfo depthStencilStateCI = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportStateCI = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleStateCI = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
const std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamicStateCI = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables.data(), static_cast<uint32_t>(dynamicStateEnables.size()), 0);
// Vertex input bindings and attributes
const std::vector<VkVertexInputBindingDescription> vertexInputBindings = {
vks::initializers::vertexInputBindingDescription(0, sizeof(VulkanglTFModel::Vertex), VK_VERTEX_INPUT_RATE_VERTEX),
};
const std::vector<VkVertexInputAttributeDescription> vertexInputAttributes = {
vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, pos)), // Location 0: Position
vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, normal)),// Location 1: Normal
vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, uv)), // Location 2: Texture coordinates
vks::initializers::vertexInputAttributeDescription(0, 3, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, color)), // Location 3: Color
vks::initializers::vertexInputAttributeDescription(0, 4, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, tangent)), // Location 4 : Tangent
};
VkPipelineVertexInputStateCreateInfo vertexInputStateCI = vks::initializers::pipelineVertexInputStateCreateInfo();
vertexInputStateCI.vertexBindingDescriptionCount = static_cast<uint32_t>(vertexInputBindings.size());
vertexInputStateCI.pVertexBindingDescriptions = vertexInputBindings.data();
vertexInputStateCI.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertexInputAttributes.size());
vertexInputStateCI.pVertexAttributeDescriptions = vertexInputAttributes.data();
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages = {
loadShader(getHomeworkShadersPath() + "homework1/mesh.vert.spv", VK_SHADER_STAGE_VERTEX_BIT),
loadShader(getHomeworkShadersPath() + "homework1/mesh.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT)
};
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayouts.pbrLayout, pbrFrameBuffer.fbo.renderPass, 0);
pipelineCI.pVertexInputState = &vertexInputStateCI;
pipelineCI.pInputAssemblyState = &inputAssemblyStateCI;
pipelineCI.pRasterizationState = &rasterizationStateCI;
pipelineCI.pColorBlendState = &colorBlendStateCI;
pipelineCI.pMultisampleState = &multisampleStateCI;
pipelineCI.pViewportState = &viewportStateCI;
pipelineCI.pDepthStencilState = &depthStencilStateCI;
pipelineCI.pDynamicState = &dynamicStateCI;
pipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCI.pStages = shaderStages.data();
// Solid rendering pipeline
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.solid));
// Wire frame rendering pipeline
if (deviceFeatures.fillModeNonSolid) {
rasterizationStateCI.polygonMode = VK_POLYGON_MODE_LINE;
rasterizationStateCI.lineWidth = 1.0f;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.wireframe));
}
//Create Tone Mapping render pipeline
CreateToneMappingPipeline();
}
void VulkanExample::CreateToneMappingPipeline()
{
if (pipelines.toneMapping != VK_NULL_HANDLE)
{
vkDestroyPipeline(device, pipelines.toneMapping, nullptr);
pipelines.toneMapping = VK_NULL_HANDLE;
}
VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationStateCI = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentStateCI = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendStateCI = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentStateCI);
VkPipelineDepthStencilStateCreateInfo depthStencilStateCI = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_FALSE, VK_FALSE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportStateCI = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleStateCI = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
const std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamicStateCI = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables.data(), static_cast<uint32_t>(dynamicStateEnables.size()), 0);
VkPipelineVertexInputStateCreateInfo emptyInputState = vks::initializers::pipelineVertexInputStateCreateInfo();
const std::string fragPath = ToneMapping ? "homework1/tonemapping_enable.frag.spv" : "homework1/tonemapping_disable.frag.spv";
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages = {
loadShader(getHomeworkShadersPath() + "homework1/genbrdflut.vert.spv", VK_SHADER_STAGE_VERTEX_BIT),
loadShader(getHomeworkShadersPath() + fragPath, VK_SHADER_STAGE_FRAGMENT_BIT)
};
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayouts.tonemappingLayout, renderPass, 0);
pipelineCI.pVertexInputState = &emptyInputState;
pipelineCI.pInputAssemblyState = &inputAssemblyStateCI;
pipelineCI.pRasterizationState = &rasterizationStateCI;
pipelineCI.pColorBlendState = &colorBlendStateCI;
pipelineCI.pMultisampleState = &multisampleStateCI;
pipelineCI.pViewportState = &viewportStateCI;
pipelineCI.pDepthStencilState = &depthStencilStateCI;
pipelineCI.pDynamicState = &dynamicStateCI;
pipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCI.pStages = shaderStages.data();
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.toneMapping));
}
//----------------------------Prepare precompute Lighting or BRDF LUT-----------------------------------------------//
//Irradiance map for diffuse lighting
void VulkanExample::GenerateIrradianceCubemap()
{
auto tStart = std::chrono::high_resolution_clock::now();
constexpr VkFormat format = VK_FORMAT_R32G32B32A32_SFLOAT;
constexpr int32_t dim = 64;
const uint32_t numMips = static_cast<uint32_t>(floor(log2(dim))) + 1;
VkImageCreateInfo imageCI = vks::initializers::imageCreateInfo();
imageCI.imageType = VK_IMAGE_TYPE_2D;
imageCI.format = format;
imageCI.extent.width = dim;
imageCI.extent.height = dim;
imageCI.extent.depth = 1;
imageCI.mipLevels = numMips;
imageCI.arrayLayers = 6;
imageCI.samples = VK_SAMPLE_COUNT_1_BIT;
imageCI.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCI.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
imageCI.flags = VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
VK_CHECK_RESULT(vkCreateImage(device, &imageCI, nullptr, &ibltextures.irradianceCube.image))
VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
vkGetImageMemoryRequirements(device, ibltextures.irradianceCube.image, &memReqs);
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &ibltextures.irradianceCube.deviceMemory))
VK_CHECK_RESULT(vkBindImageMemory(device, ibltextures.irradianceCube.image, ibltextures.irradianceCube.deviceMemory, 0))
VkImageViewCreateInfo viewCI = vks::initializers::imageViewCreateInfo();
viewCI.viewType = VK_IMAGE_VIEW_TYPE_CUBE;
viewCI.format = format;
viewCI.subresourceRange = {};
viewCI.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
viewCI.subresourceRange.levelCount = numMips;
viewCI.subresourceRange.layerCount = 6;
viewCI.image = ibltextures.irradianceCube.image;
VK_CHECK_RESULT(vkCreateImageView(device, &viewCI, nullptr, &ibltextures.irradianceCube.view))
VkSamplerCreateInfo samplerCI = vks::initializers::samplerCreateInfo();
samplerCI.magFilter = VK_FILTER_LINEAR;
samplerCI.minFilter = VK_FILTER_LINEAR;
samplerCI.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
samplerCI.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samplerCI.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samplerCI.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samplerCI.minLod = 0.0f;
samplerCI.maxLod = static_cast<float>(numMips);
samplerCI.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
VK_CHECK_RESULT(vkCreateSampler(device, &samplerCI, nullptr, &ibltextures.irradianceCube.sampler))
ibltextures.irradianceCube.descriptor.imageView = ibltextures.irradianceCube.view;
ibltextures.irradianceCube.descriptor.sampler = ibltextures.irradianceCube.sampler;
ibltextures.irradianceCube.descriptor.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
ibltextures.irradianceCube.device = vulkanDevice;
//Setup Framebuffer and so on
VkAttachmentDescription attDesc = {};
attDesc.format = format;
attDesc.samples = VK_SAMPLE_COUNT_1_BIT;
attDesc.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attDesc.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attDesc.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attDesc.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attDesc.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attDesc.finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
VkAttachmentReference colorReference = { 0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL };
VkSubpassDescription subpassDescription = {};
subpassDescription.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpassDescription.colorAttachmentCount = 1;
subpassDescription.pColorAttachments = &colorReference;
std::array<VkSubpassDependency, 2> dependencies;
dependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL;
dependencies[0].dstSubpass = 0;
dependencies[0].srcStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
dependencies[0].dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependencies[0].srcAccessMask = VK_ACCESS_MEMORY_READ_BIT;
dependencies[0].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
dependencies[0].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
dependencies[1].srcSubpass = 0;
dependencies[1].dstSubpass = VK_SUBPASS_EXTERNAL;
dependencies[1].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependencies[1].dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
dependencies[1].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
dependencies[1].dstAccessMask = VK_ACCESS_MEMORY_READ_BIT;
dependencies[1].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
VkRenderPassCreateInfo renderPassCI = vks::initializers::renderPassCreateInfo();
renderPassCI.attachmentCount = 1;
renderPassCI.pAttachments = &attDesc;
renderPassCI.subpassCount = 1;
renderPassCI.pSubpasses = &subpassDescription;
renderPassCI.dependencyCount = 2;
renderPassCI.pDependencies = dependencies.data();
VkRenderPass renderpass;
VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassCI, nullptr, &renderpass));
{
VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.extent.width = dim;
imageCreateInfo.extent.height = dim;
imageCreateInfo.extent.depth = 1;
imageCreateInfo.mipLevels = 1;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageCreateInfo.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &offscreen.image))
VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
vkGetImageMemoryRequirements(device, offscreen.image, &memReqs);
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &offscreen.memory))
VK_CHECK_RESULT(vkBindImageMemory(device, offscreen.image, offscreen.memory, 0))
VkImageViewCreateInfo colorImageView = vks::initializers::imageViewCreateInfo();
colorImageView.viewType = VK_IMAGE_VIEW_TYPE_2D;
colorImageView.format = format;
colorImageView.flags = 0;
colorImageView.subresourceRange = {};
colorImageView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
colorImageView.subresourceRange.baseMipLevel = 0;
colorImageView.subresourceRange.levelCount = 1;
colorImageView.subresourceRange.baseArrayLayer = 0;
colorImageView.subresourceRange.layerCount = 1;
colorImageView.image = offscreen.image;
VK_CHECK_RESULT(vkCreateImageView(device, &colorImageView, nullptr, &offscreen.view))
VkFramebufferCreateInfo fbufCreateInfo = vks::initializers::framebufferCreateInfo();
fbufCreateInfo.renderPass = renderpass;
fbufCreateInfo.attachmentCount = 1;
fbufCreateInfo.pAttachments = &offscreen.view;
fbufCreateInfo.width = dim;
fbufCreateInfo.height = dim;
fbufCreateInfo.layers = 1;
VK_CHECK_RESULT(vkCreateFramebuffer(device, &fbufCreateInfo, nullptr, &offscreen.framebuffer))
VkCommandBuffer layoutCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
vks::tools::setImageLayout(
layoutCmd,
offscreen.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
vulkanDevice->flushCommandBuffer(layoutCmd, queue, true);
}
VkDescriptorSetLayout descriptorsetlayout;
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
{
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 0),
};
VkDescriptorSetLayoutCreateInfo descriptorsetlayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorsetlayoutCI, nullptr, &descriptorsetlayout));
std::vector<VkDescriptorPoolSize> poolSizes = { vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1) };
VkDescriptorPoolCreateInfo descriptorPoolCI = vks::initializers::descriptorPoolCreateInfo(poolSizes, 2);
VkDescriptorPool descriptorpool;
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolCI, nullptr, &descriptorpool));
VkDescriptorSet descriptorset;
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorpool, &descriptorsetlayout, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorset));
VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(descriptorset, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &ibltextures.skyboxCube.descriptor);
vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr);
VkPipelineLayout pipelinelayout;
std::vector<VkPushConstantRange> pushConstantRanges =
{
vks::initializers::pushConstantRange(VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, sizeof(IrradiancePushBlock), 0)
};
VkPipelineLayoutCreateInfo pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(&descriptorsetlayout, 1);
pipelineLayoutCI.pushConstantRangeCount = 1;
pipelineLayoutCI.pPushConstantRanges = pushConstantRanges.data();
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelinelayout));
//Pipeline Setting
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_FALSE, VK_FALSE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1);
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT);
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
const std::vector<VkVertexInputBindingDescription> vertexInputBindings =
{
vks::initializers::vertexInputBindingDescription(0, sizeof(VulkanglTFModel::Vertex), VK_VERTEX_INPUT_RATE_VERTEX),
};
const std::vector<VkVertexInputAttributeDescription> vertexInputAttributes = {
vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, pos)), // Location 0: Position
//vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, normal)),// Location 1: Normal
//vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, uv)), // Location 2: Texture coordinates
//vks::initializers::vertexInputAttributeDescription(0, 3, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, color)), // Location 3: Color
//vks::initializers::vertexInputAttributeDescription(0, 4, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, tangent)), // Location 4 : Tangent
};
VkPipelineVertexInputStateCreateInfo vertexInputStateCI = vks::initializers::pipelineVertexInputStateCreateInfo();
vertexInputStateCI.vertexBindingDescriptionCount = static_cast<uint32_t>(vertexInputBindings.size());
vertexInputStateCI.pVertexBindingDescriptions = vertexInputBindings.data();
vertexInputStateCI.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertexInputAttributes.size());
vertexInputStateCI.pVertexAttributeDescriptions = vertexInputAttributes.data();
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelinelayout, renderpass);
pipelineCI.pInputAssemblyState = &inputAssemblyState;
pipelineCI.pRasterizationState = &rasterizationState;
pipelineCI.pColorBlendState = &colorBlendState;
pipelineCI.pMultisampleState = &multisampleState;
pipelineCI.pViewportState = &viewportState;
pipelineCI.pDepthStencilState = &depthStencilState;
pipelineCI.pDynamicState = &dynamicState;
pipelineCI.stageCount = 2;
pipelineCI.pStages = shaderStages.data();
pipelineCI.renderPass = renderpass;
pipelineCI.pVertexInputState = &vertexInputStateCI;
shaderStages[0] = loadShader(getHomeworkShadersPath() + "homework1/filtercube.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getHomeworkShadersPath() + "homework1/irradiancecube.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VkPipeline pipeline;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipeline));
//Render
VkClearValue clearValues[1];
clearValues[0].color = { { 0.0f, 0.0f, 0.2f, 0.0f } };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderpass;
renderPassBeginInfo.framebuffer = offscreen.framebuffer;
renderPassBeginInfo.renderArea.extent.width = dim;
renderPassBeginInfo.renderArea.extent.height = dim;
renderPassBeginInfo.clearValueCount = 1;
renderPassBeginInfo.pClearValues = clearValues;
//six face in cube map
std::vector<glm::mat4> matrices = {
// POSITIVE_X
glm::rotate(glm::rotate(glm::mat4(1.0f), glm::radians(90.0f), glm::vec3(0.0f, 1.0f, 0.0f)), glm::radians(180.0f), glm::vec3(1.0f, 0.0f, 0.0f)),
// NEGATIVE_X
glm::rotate(glm::rotate(glm::mat4(1.0f), glm::radians(-90.0f), glm::vec3(0.0f, 1.0f, 0.0f)), glm::radians(180.0f), glm::vec3(1.0f, 0.0f, 0.0f)),
// POSITIVE_Y
glm::rotate(glm::mat4(1.0f), glm::radians(-90.0f), glm::vec3(1.0f, 0.0f, 0.0f)),
// NEGATIVE_Y
glm::rotate(glm::mat4(1.0f), glm::radians(90.0f), glm::vec3(1.0f, 0.0f, 0.0f)),
// POSITIVE_Z
glm::rotate(glm::mat4(1.0f), glm::radians(180.0f), glm::vec3(1.0f, 0.0f, 0.0f)),
// NEGATIVE_Z
glm::rotate(glm::mat4(1.0f), glm::radians(180.0f), glm::vec3(0.0f, 0.0f, 1.0f)),
};
VkCommandBuffer cmdBuf = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
VkViewport viewport = vks::initializers::viewport((float)dim, (float)dim, 0.0f, 1.0f);
VkRect2D scissor = vks::initializers::rect2D(dim, dim, 0, 0);
vkCmdSetViewport(cmdBuf, 0, 1, &viewport);
vkCmdSetScissor(cmdBuf, 0, 1, &scissor);
VkImageSubresourceRange subresourceRange = {};
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subresourceRange.baseMipLevel = 0;
subresourceRange.levelCount = numMips;
subresourceRange.layerCount = 6;
vks::tools::setImageLayout(
cmdBuf,
ibltextures.irradianceCube.image,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
subresourceRange);
for(uint32_t m = 0; m < numMips; ++m)
{
for(uint32_t f = 0; f < 6; ++f)
{
viewport.width = static_cast<float>(dim * std::pow(0.5f, m));
viewport.height = static_cast<float>(dim * std::pow(0.5f, m));
vkCmdSetViewport(cmdBuf, 0, 1, &viewport);
// Render scene from cube face's point of view
vkCmdBeginRenderPass(cmdBuf, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
irradiancePushBlock.mvp = glm::perspective((float)(M_PI / 2.0), 1.0f, 0.1f, 512.0f) * matrices[f];
vkCmdPushConstants(cmdBuf, pipelinelayout, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0, sizeof(IrradiancePushBlock), &irradiancePushBlock);
vkCmdBindPipeline(cmdBuf, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
vkCmdBindDescriptorSets(cmdBuf, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelinelayout, 0, 1, &descriptorset, 0, NULL);
skyboxModel.draw(cmdBuf, pipelinelayout, false);
vkCmdEndRenderPass(cmdBuf);
vks::tools::setImageLayout(
cmdBuf,
offscreen.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
VkImageCopy copyRegion = {};
copyRegion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copyRegion.srcSubresource.layerCount = 1;
copyRegion.srcSubresource.mipLevel = 0;
copyRegion.srcSubresource.baseArrayLayer = 0;
copyRegion.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copyRegion.dstSubresource.layerCount = 1;
copyRegion.dstSubresource.mipLevel = m;
copyRegion.dstSubresource.baseArrayLayer = f;
copyRegion.extent.width = static_cast<uint32_t>(viewport.width);
copyRegion.extent.height = static_cast<uint32_t>(viewport.height);
copyRegion.extent.depth = 1;
vkCmdCopyImage(
cmdBuf,
offscreen.image,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
ibltextures.irradianceCube.image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1,
&copyRegion);
vks::tools::setImageLayout(cmdBuf,
offscreen.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL
);
}
}
vks::tools::setImageLayout(cmdBuf,
ibltextures.irradianceCube.image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
subresourceRange);
vulkanDevice->flushCommandBuffer(cmdBuf, queue);
vkDestroyRenderPass(device, renderpass, nullptr);
vkDestroyFramebuffer(device, offscreen.framebuffer, nullptr);
vkFreeMemory(device, offscreen.memory, nullptr);
vkDestroyImageView(device, offscreen.view, nullptr);
vkDestroyImage(device, offscreen.image, nullptr);
vkDestroyDescriptorPool(device, descriptorpool, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorsetlayout, nullptr);
vkDestroyPipeline(device, pipeline, nullptr);
vkDestroyPipelineLayout(device, pipelinelayout, nullptr);
auto tEnd = std::chrono::high_resolution_clock::now();
auto tDiff = std::chrono::duration<double, std::milli>(tEnd - tStart).count();
std::cout << "Generating irradiance cube with " << numMips << " mip levels took " << tDiff << " ms" << std::endl;
}
void VulkanExample::GeneratePrefilteredCubemap()
{
auto tStart = std::chrono::high_resolution_clock::now();
constexpr VkFormat format = VK_FORMAT_R32G32B32A32_SFLOAT;
constexpr int32_t dim = 512;
const uint32_t numMips = static_cast<uint32_t>(floor(log2(dim))) + 1;
VkImageCreateInfo imageCI = vks::initializers::imageCreateInfo();
imageCI.imageType = VK_IMAGE_TYPE_2D;
imageCI.format = format;
imageCI.extent.width = dim;
imageCI.extent.height = dim;
imageCI.extent.depth = 1;
imageCI.mipLevels = numMips;
imageCI.arrayLayers = 6;
imageCI.samples = VK_SAMPLE_COUNT_1_BIT;
imageCI.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCI.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
imageCI.flags = VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
VK_CHECK_RESULT(vkCreateImage(device, &imageCI, nullptr, &ibltextures.prefilteredCube.image));
VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
vkGetImageMemoryRequirements(device, ibltextures.prefilteredCube.image, &memReqs);
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &ibltextures.prefilteredCube.deviceMemory));
VK_CHECK_RESULT(vkBindImageMemory(device, ibltextures.prefilteredCube.image, ibltextures.prefilteredCube.deviceMemory, 0));
// Image view
VkImageViewCreateInfo viewCI = vks::initializers::imageViewCreateInfo();
viewCI.viewType = VK_IMAGE_VIEW_TYPE_CUBE;
viewCI.format = format;
viewCI.subresourceRange = {};
viewCI.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
viewCI.subresourceRange.levelCount = numMips;
viewCI.subresourceRange.layerCount = 6;
viewCI.image = ibltextures.prefilteredCube.image;
VK_CHECK_RESULT(vkCreateImageView(device, &viewCI, nullptr, &ibltextures.prefilteredCube.view));
// Sampler
VkSamplerCreateInfo samplerCI = vks::initializers::samplerCreateInfo();
samplerCI.magFilter = VK_FILTER_LINEAR;
samplerCI.minFilter = VK_FILTER_LINEAR;
samplerCI.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
samplerCI.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samplerCI.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samplerCI.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samplerCI.minLod = 0.0f;
samplerCI.maxLod = static_cast<float>(numMips);
samplerCI.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
VK_CHECK_RESULT(vkCreateSampler(device, &samplerCI, nullptr, &ibltextures.prefilteredCube.sampler));
ibltextures.prefilteredCube.descriptor.imageView = ibltextures.prefilteredCube.view;
ibltextures.prefilteredCube.descriptor.sampler = ibltextures.prefilteredCube.sampler;
ibltextures.prefilteredCube.descriptor.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
ibltextures.prefilteredCube.device = vulkanDevice;
// FB, Att, RP, Pipe, etc.
VkAttachmentDescription attDesc = {};
// Color attachment
attDesc.format = format;
attDesc.samples = VK_SAMPLE_COUNT_1_BIT;
attDesc.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attDesc.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attDesc.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attDesc.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attDesc.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attDesc.finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
VkAttachmentReference colorReference = { 0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL };
VkSubpassDescription subpassDescription = {};
subpassDescription.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpassDescription.colorAttachmentCount = 1;
subpassDescription.pColorAttachments = &colorReference;
// Use subpass dependencies for layout transitions
std::array<VkSubpassDependency, 2> dependencies;
dependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL;
dependencies[0].dstSubpass = 0;
dependencies[0].srcStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
dependencies[0].dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependencies[0].srcAccessMask = VK_ACCESS_MEMORY_READ_BIT;
dependencies[0].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
dependencies[0].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
dependencies[1].srcSubpass = 0;
dependencies[1].dstSubpass = VK_SUBPASS_EXTERNAL;
dependencies[1].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependencies[1].dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
dependencies[1].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
dependencies[1].dstAccessMask = VK_ACCESS_MEMORY_READ_BIT;
dependencies[1].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
// Renderpass
VkRenderPassCreateInfo renderPassCI = vks::initializers::renderPassCreateInfo();
renderPassCI.attachmentCount = 1;
renderPassCI.pAttachments = &attDesc;
renderPassCI.subpassCount = 1;
renderPassCI.pSubpasses = &subpassDescription;
renderPassCI.dependencyCount = 2;
renderPassCI.pDependencies = dependencies.data();
VkRenderPass renderpass;
VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassCI, nullptr, &renderpass));
struct {
VkImage image;
VkImageView view;
VkDeviceMemory memory;
VkFramebuffer framebuffer;
} offscreen;
//framebuffer
{
// Color attachment
VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.extent.width = dim;
imageCreateInfo.extent.height = dim;
imageCreateInfo.extent.depth = 1;
imageCreateInfo.mipLevels = 1;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageCreateInfo.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &offscreen.image));
VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
vkGetImageMemoryRequirements(device, offscreen.image, &memReqs);
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &offscreen.memory));
VK_CHECK_RESULT(vkBindImageMemory(device, offscreen.image, offscreen.memory, 0));
VkImageViewCreateInfo colorImageView = vks::initializers::imageViewCreateInfo();
colorImageView.viewType = VK_IMAGE_VIEW_TYPE_2D;
colorImageView.format = format;
colorImageView.flags = 0;
colorImageView.subresourceRange = {};
colorImageView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
colorImageView.subresourceRange.baseMipLevel = 0;
colorImageView.subresourceRange.levelCount = 1;
colorImageView.subresourceRange.baseArrayLayer = 0;
colorImageView.subresourceRange.layerCount = 1;
colorImageView.image = offscreen.image;
VK_CHECK_RESULT(vkCreateImageView(device, &colorImageView, nullptr, &offscreen.view));
VkFramebufferCreateInfo fbufCreateInfo = vks::initializers::framebufferCreateInfo();
fbufCreateInfo.renderPass = renderpass;
fbufCreateInfo.attachmentCount = 1;
fbufCreateInfo.pAttachments = &offscreen.view;
fbufCreateInfo.width = dim;
fbufCreateInfo.height = dim;
fbufCreateInfo.layers = 1;
VK_CHECK_RESULT(vkCreateFramebuffer(device, &fbufCreateInfo, nullptr, &offscreen.framebuffer));
VkCommandBuffer layoutCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
vks::tools::setImageLayout(
layoutCmd,
offscreen.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
vulkanDevice->flushCommandBuffer(layoutCmd, queue, true);
}
// Descriptors
VkDescriptorSetLayout descriptorsetlayout;
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 0),
};
VkDescriptorSetLayoutCreateInfo descriptorsetlayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorsetlayoutCI, nullptr, &descriptorsetlayout));
// Descriptor Pool
std::vector<VkDescriptorPoolSize> poolSizes = { vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1) };
VkDescriptorPoolCreateInfo descriptorPoolCI = vks::initializers::descriptorPoolCreateInfo(poolSizes, 2);
VkDescriptorPool descriptorpool;
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolCI, nullptr, &descriptorpool));
VkDescriptorSet descriptorset;
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorpool, &descriptorsetlayout, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorset));
VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(descriptorset, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &ibltextures.skyboxCube.descriptor);
vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr);
struct PushBlock {
glm::mat4 mvp;
float roughness;
uint32_t numSamples = 32u;
} pushBlock;
std::vector<VkPushConstantRange> pushConstantRanges = {
vks::initializers::pushConstantRange(VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, sizeof(PushBlock), 0),
};
VkPipelineLayoutCreateInfo pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(&descriptorsetlayout, 1);
pipelineLayoutCI.pushConstantRangeCount = 1;
pipelineLayoutCI.pPushConstantRanges = pushConstantRanges.data();
VkPipelineLayout pipelinelayout;
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelinelayout));
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_FALSE, VK_FALSE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1);
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT);
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
const std::vector<VkVertexInputBindingDescription> vertexInputBindings =
{
vks::initializers::vertexInputBindingDescription(0, sizeof(VulkanglTFModel::Vertex), VK_VERTEX_INPUT_RATE_VERTEX),
};
const std::vector<VkVertexInputAttributeDescription> vertexInputAttributes = {
vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, pos)), // Location 0: Position
};
VkPipelineVertexInputStateCreateInfo vertexInputStateCI = vks::initializers::pipelineVertexInputStateCreateInfo();
vertexInputStateCI.vertexBindingDescriptionCount = static_cast<uint32_t>(vertexInputBindings.size());
vertexInputStateCI.pVertexBindingDescriptions = vertexInputBindings.data();
vertexInputStateCI.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertexInputAttributes.size());
vertexInputStateCI.pVertexAttributeDescriptions = vertexInputAttributes.data();
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelinelayout, renderpass);
pipelineCI.pInputAssemblyState = &inputAssemblyState;
pipelineCI.pRasterizationState = &rasterizationState;
pipelineCI.pColorBlendState = &colorBlendState;
pipelineCI.pMultisampleState = &multisampleState;
pipelineCI.pViewportState = &viewportState;
pipelineCI.pDepthStencilState = &depthStencilState;
pipelineCI.pDynamicState = &dynamicState;
pipelineCI.stageCount = 2;
pipelineCI.pStages = shaderStages.data();
pipelineCI.renderPass = renderpass;
pipelineCI.pVertexInputState = &vertexInputStateCI;
shaderStages[0] = loadShader(getHomeworkShadersPath() + "homework1/filtercube.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getHomeworkShadersPath() + "homework1/prefilterenvmap.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VkPipeline pipeline;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipeline));
//Render & build cmd
VkClearValue clearValues[1];
clearValues[0].color = { { 0.0f, 0.0f, 0.2f, 0.0f } };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
// Reuse render pass from example pass
renderPassBeginInfo.renderPass = renderpass;
renderPassBeginInfo.framebuffer = offscreen.framebuffer;
renderPassBeginInfo.renderArea.extent.width = dim;
renderPassBeginInfo.renderArea.extent.height = dim;
renderPassBeginInfo.clearValueCount = 1;
renderPassBeginInfo.pClearValues = clearValues;
std::vector<glm::mat4> matrices = {
// POSITIVE_X
glm::rotate(glm::rotate(glm::mat4(1.0f), glm::radians(90.0f), glm::vec3(0.0f, 1.0f, 0.0f)), glm::radians(180.0f), glm::vec3(1.0f, 0.0f, 0.0f)),
// NEGATIVE_X
glm::rotate(glm::rotate(glm::mat4(1.0f), glm::radians(-90.0f), glm::vec3(0.0f, 1.0f, 0.0f)), glm::radians(180.0f), glm::vec3(1.0f, 0.0f, 0.0f)),
// POSITIVE_Y
glm::rotate(glm::mat4(1.0f), glm::radians(-90.0f), glm::vec3(1.0f, 0.0f, 0.0f)),
// NEGATIVE_Y
glm::rotate(glm::mat4(1.0f), glm::radians(90.0f), glm::vec3(1.0f, 0.0f, 0.0f)),
// POSITIVE_Z
glm::rotate(glm::mat4(1.0f), glm::radians(180.0f), glm::vec3(1.0f, 0.0f, 0.0f)),
// NEGATIVE_Z
glm::rotate(glm::mat4(1.0f), glm::radians(180.0f), glm::vec3(0.0f, 0.0f, 1.0f)),
};
VkCommandBuffer cmdBuf = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
VkViewport viewport = vks::initializers::viewport((float)dim, (float)dim, 0.0f, 1.0f);
VkRect2D scissor = vks::initializers::rect2D(dim, dim, 0, 0);
vkCmdSetViewport(cmdBuf, 0, 1, &viewport);
vkCmdSetScissor(cmdBuf, 0, 1, &scissor);
VkImageSubresourceRange subresourceRange = {};
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subresourceRange.baseMipLevel = 0;
subresourceRange.levelCount = numMips;
subresourceRange.layerCount = 6;
vks::tools::setImageLayout(
cmdBuf,
ibltextures.prefilteredCube.image,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
subresourceRange);
for (uint32_t m = 0; m < numMips; ++m)
{
//mip level according to roughness
pushBlock.roughness = float(m) / float(numMips - 1);
for (uint32_t f = 0; f < 6; ++f)
{
viewport.width = static_cast<float>(dim * std::pow(0.5f, m));
viewport.height = static_cast<float>(dim * std::pow(0.5f, m));
vkCmdSetViewport(cmdBuf, 0, 1, &viewport);
// Render scene from cube face's point of view
vkCmdBeginRenderPass(cmdBuf, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
// Update shader push constant block
pushBlock.mvp = glm::perspective((float)(M_PI / 2.0), 1.0f, 0.1f, 512.0f) * matrices[f];
vkCmdPushConstants(cmdBuf, pipelinelayout, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0, sizeof(PushBlock), &pushBlock);
vkCmdBindPipeline(cmdBuf, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
vkCmdBindDescriptorSets(cmdBuf, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelinelayout, 0, 1, &descriptorset, 0, nullptr);
skyboxModel.draw(cmdBuf, pipelinelayout, false);
vkCmdEndRenderPass(cmdBuf);
vks::tools::setImageLayout(
cmdBuf,
offscreen.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
VkImageCopy copyRegion{};
copyRegion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copyRegion.srcSubresource.baseArrayLayer = 0;
copyRegion.srcSubresource.mipLevel = 0;
copyRegion.srcSubresource.layerCount = 1;
copyRegion.srcOffset = { 0, 0, 0 };
copyRegion.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copyRegion.dstSubresource.baseArrayLayer = f;
copyRegion.dstSubresource.mipLevel = m;
copyRegion.dstSubresource.layerCount = 1;
copyRegion.dstOffset = { 0, 0, 0 };
copyRegion.extent.width = static_cast<uint32_t>(viewport.width);
copyRegion.extent.height = static_cast<uint32_t>(viewport.height);
copyRegion.extent.depth = 1;
vkCmdCopyImage(
cmdBuf,
offscreen.image,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
ibltextures.prefilteredCube.image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1,
&copyRegion);
//Reset frame buffer image layout
vks::tools::setImageLayout(
cmdBuf,
offscreen.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
}
}
//Set format shader read
vks::tools::setImageLayout(
cmdBuf,
ibltextures.prefilteredCube.image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
subresourceRange);
vulkanDevice->flushCommandBuffer(cmdBuf, queue);
vkDestroyRenderPass(device, renderpass, nullptr);
vkDestroyFramebuffer(device, offscreen.framebuffer, nullptr);
vkFreeMemory(device, offscreen.memory, nullptr);
vkDestroyImageView(device, offscreen.view, nullptr);
vkDestroyImage(device, offscreen.image, nullptr);
vkDestroyDescriptorPool(device, descriptorpool, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorsetlayout, nullptr);
vkDestroyPipeline(device, pipeline, nullptr);
vkDestroyPipelineLayout(device, pipelinelayout, nullptr);
auto tEnd = std::chrono::high_resolution_clock::now();
auto tDiff = std::chrono::duration<double, std::milli>(tEnd - tStart).count();
std::cout << "Generating pre-filtered environment cube with " << numMips << " mip levels took " << tDiff << " ms" << std::endl;
}
void VulkanExample::GenerateBRDFLUT()
{
auto tStart = std::chrono::high_resolution_clock::now();
constexpr VkFormat format = VK_FORMAT_R16G16_SFLOAT;
constexpr int32_t dim = 512;
// Image
VkImageCreateInfo imageCI = vks::initializers::imageCreateInfo();
imageCI.imageType = VK_IMAGE_TYPE_2D;
imageCI.format = format;
imageCI.extent.width = dim;
imageCI.extent.height = dim;
imageCI.extent.depth = 1;
imageCI.mipLevels = 1;
imageCI.arrayLayers = 1;
imageCI.samples = VK_SAMPLE_COUNT_1_BIT;
imageCI.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCI.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
VK_CHECK_RESULT(vkCreateImage(device, &imageCI, nullptr, &ibltextures.lutBrdf.image));
VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
vkGetImageMemoryRequirements(device, ibltextures.lutBrdf.image, &memReqs);
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &ibltextures.lutBrdf.deviceMemory));
VK_CHECK_RESULT(vkBindImageMemory(device, ibltextures.lutBrdf.image, ibltextures.lutBrdf.deviceMemory, 0));
// Image view
VkImageViewCreateInfo viewCI = vks::initializers::imageViewCreateInfo();
viewCI.viewType = VK_IMAGE_VIEW_TYPE_2D;
viewCI.format = format;
viewCI.subresourceRange = {};
viewCI.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
viewCI.subresourceRange.levelCount = 1;
viewCI.subresourceRange.layerCount = 1;
viewCI.image = ibltextures.lutBrdf.image;
VK_CHECK_RESULT(vkCreateImageView(device, &viewCI, nullptr, &ibltextures.lutBrdf.view));
// Sampler
VkSamplerCreateInfo samplerCI = vks::initializers::samplerCreateInfo();
samplerCI.magFilter = VK_FILTER_LINEAR;
samplerCI.minFilter = VK_FILTER_LINEAR;
samplerCI.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
samplerCI.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samplerCI.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samplerCI.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samplerCI.minLod = 0.0f;
samplerCI.maxLod = 1.0f;
samplerCI.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
VK_CHECK_RESULT(vkCreateSampler(device, &samplerCI, nullptr, &ibltextures.lutBrdf.sampler));
ibltextures.lutBrdf.descriptor.imageView = ibltextures.lutBrdf.view;
ibltextures.lutBrdf.descriptor.sampler = ibltextures.lutBrdf.sampler;
ibltextures.lutBrdf.descriptor.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
ibltextures.lutBrdf.device = vulkanDevice;
// FB, Att, RP, Pipe, etc.
VkAttachmentDescription attDesc = {};
// Color attachment
attDesc.format = format;
attDesc.samples = VK_SAMPLE_COUNT_1_BIT;
attDesc.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attDesc.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attDesc.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attDesc.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attDesc.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attDesc.finalLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
VkAttachmentReference colorReference = { 0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL };
VkSubpassDescription subpassDescription = {};
subpassDescription.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpassDescription.colorAttachmentCount = 1;
subpassDescription.pColorAttachments = &colorReference;
// Use subpass dependencies for layout transitions
std::array<VkSubpassDependency, 2> dependencies;
dependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL;
dependencies[0].dstSubpass = 0;
dependencies[0].srcStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
dependencies[0].dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependencies[0].srcAccessMask = VK_ACCESS_MEMORY_READ_BIT;
dependencies[0].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
dependencies[0].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
dependencies[1].srcSubpass = 0;
dependencies[1].dstSubpass = VK_SUBPASS_EXTERNAL;
dependencies[1].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependencies[1].dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
dependencies[1].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
dependencies[1].dstAccessMask = VK_ACCESS_MEMORY_READ_BIT;
dependencies[1].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
// Create the actual render pass
VkRenderPassCreateInfo renderPassCI = vks::initializers::renderPassCreateInfo();
renderPassCI.attachmentCount = 1;
renderPassCI.pAttachments = &attDesc;
renderPassCI.subpassCount = 1;
renderPassCI.pSubpasses = &subpassDescription;
renderPassCI.dependencyCount = 2;
renderPassCI.pDependencies = dependencies.data();
VkRenderPass renderpass;
VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassCI, nullptr, &renderpass));
VkFramebufferCreateInfo framebufferCI = vks::initializers::framebufferCreateInfo();
framebufferCI.renderPass = renderpass;
framebufferCI.attachmentCount = 1;
framebufferCI.pAttachments = &ibltextures.lutBrdf.view;
framebufferCI.width = dim;
framebufferCI.height = dim;
framebufferCI.layers = 1;
VkFramebuffer framebuffer;
VK_CHECK_RESULT(vkCreateFramebuffer(device, &framebufferCI, nullptr, &framebuffer));
// Descriptors
VkDescriptorSetLayout descriptorsetlayout;
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {};
VkDescriptorSetLayoutCreateInfo descriptorsetlayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorsetlayoutCI, nullptr, &descriptorsetlayout));
// Descriptor Pool
std::vector<VkDescriptorPoolSize> poolSizes = { vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1) };
VkDescriptorPoolCreateInfo descriptorPoolCI = vks::initializers::descriptorPoolCreateInfo(poolSizes, 2);
VkDescriptorPool descriptorpool;
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolCI, nullptr, &descriptorpool));
// Descriptor sets
VkDescriptorSet descriptorset;
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorpool, &descriptorsetlayout, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorset));
// Pipeline layout
VkPipelineLayout pipelinelayout;
VkPipelineLayoutCreateInfo pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(&descriptorsetlayout, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelinelayout));
// Pipeline
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_FALSE, VK_FALSE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1);
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT);
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
VkPipelineVertexInputStateCreateInfo emptyInputState = vks::initializers::pipelineVertexInputStateCreateInfo();
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelinelayout, renderpass);
pipelineCI.pInputAssemblyState = &inputAssemblyState;
pipelineCI.pRasterizationState = &rasterizationState;
pipelineCI.pColorBlendState = &colorBlendState;
pipelineCI.pMultisampleState = &multisampleState;
pipelineCI.pViewportState = &viewportState;
pipelineCI.pDepthStencilState = &depthStencilState;
pipelineCI.pDynamicState = &dynamicState;
pipelineCI.stageCount = 2;
pipelineCI.pStages = shaderStages.data();
pipelineCI.pVertexInputState = &emptyInputState;
// Look-up-table (from BRDF) pipeline
shaderStages[0] = loadShader(getHomeworkShadersPath() + "homework1/genbrdflut.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getHomeworkShadersPath() + "homework1/genbrdflut.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VkPipeline pipeline;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipeline));
// Render
VkClearValue clearValues[1];
clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 1.0f } };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderpass;
renderPassBeginInfo.renderArea.extent.width = dim;
renderPassBeginInfo.renderArea.extent.height = dim;
renderPassBeginInfo.clearValueCount = 1;
renderPassBeginInfo.pClearValues = clearValues;
renderPassBeginInfo.framebuffer = framebuffer;
VkCommandBuffer cmdBuf = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
vkCmdBeginRenderPass(cmdBuf, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport((float)dim, (float)dim, 0.0f, 1.0f);
VkRect2D scissor = vks::initializers::rect2D(dim, dim, 0, 0);
vkCmdSetViewport(cmdBuf, 0, 1, &viewport);
vkCmdSetScissor(cmdBuf, 0, 1, &scissor);
vkCmdBindPipeline(cmdBuf, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
vkCmdDraw(cmdBuf, 3, 1, 0, 0);
vkCmdEndRenderPass(cmdBuf);
vulkanDevice->flushCommandBuffer(cmdBuf, queue);
vkQueueWaitIdle(queue);
vkDestroyPipeline(device, pipeline, nullptr);
vkDestroyPipelineLayout(device, pipelinelayout, nullptr);
vkDestroyRenderPass(device, renderpass, nullptr);
vkDestroyFramebuffer(device, framebuffer, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorsetlayout, nullptr);
vkDestroyDescriptorPool(device, descriptorpool, nullptr);
auto tEnd = std::chrono::high_resolution_clock::now();
auto tDiff = std::chrono::duration<double, std::milli>(tEnd - tStart).count();
std::cout << "Generating BRDF LUT took " << tDiff << " ms" << std::endl;
}
//----------------------------End Precompute brick------------------------------------------------------------------//
#pragma region pbr render pass setting
void VulkanExample::createAttachment(
VkFormat format,
VkImageUsageFlagBits usage,
FrameBufferAttachment* attachment,
uint32_t width,
uint32_t height)
{
VkImageAspectFlags aspectMask = 0;
VkImageUsageFlags imageUsage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
attachment->format = format;
if (usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT)
{
aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
imageUsage |= VK_IMAGE_USAGE_SAMPLED_BIT;
}
if (usage & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)
{
aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
if (format >= VK_FORMAT_D16_UNORM_S8_UINT)
aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT;
}
assert(aspectMask > 0);
VkImageCreateInfo image = vks::initializers::imageCreateInfo();
image.imageType = VK_IMAGE_TYPE_2D;
image.format = format;
image.extent.width = width;
image.extent.height = height;
image.extent.depth = 1;
image.mipLevels = 1;
image.arrayLayers = 1;
image.samples = VK_SAMPLE_COUNT_1_BIT;
image.tiling = VK_IMAGE_TILING_OPTIMAL;
image.usage = imageUsage | usage;
VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
VK_CHECK_RESULT(vkCreateImage(device, &image, nullptr, &attachment->image));
vkGetImageMemoryRequirements(device, attachment->image, &memReqs);
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &attachment->deviceMemory));
VK_CHECK_RESULT(vkBindImageMemory(device, attachment->image, attachment->deviceMemory, 0));
VkImageViewCreateInfo imageView = vks::initializers::imageViewCreateInfo();
imageView.viewType = VK_IMAGE_VIEW_TYPE_2D;
imageView.format = format;
imageView.subresourceRange = {};
imageView.subresourceRange.aspectMask = aspectMask;
imageView.subresourceRange.baseMipLevel = 0;
imageView.subresourceRange.levelCount = 1;
imageView.subresourceRange.baseArrayLayer = 0;
imageView.subresourceRange.layerCount = 1;
imageView.image = attachment->image;
VK_CHECK_RESULT(vkCreateImageView(device, &imageView, nullptr, &attachment->imageView));
}
#pragma endregion
// Prepare and initialize uniform buffer containing shader uniforms
void VulkanExample::prepareUniformBuffers()
{
// Vertex shader uniform buffer block
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&shaderData.buffer,
sizeof(shaderData.values)));
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_STORAGE_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&shaderData.skinSSBO,
sizeof(glm::mat4) * glTFModel.nodeCount));
// Map persistent
VK_CHECK_RESULT(shaderData.buffer.map());
VK_CHECK_RESULT(shaderData.skinSSBO.map());
for (auto& material : glTFModel.materials)
{
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT,
&material.materialData.buffer,
sizeof(VulkanglTFModel::MaterialData::Values),
&material.materialData.values));
}
updateUniformBuffers();
}
void VulkanExample::updateUniformBuffers()
{
shaderData.values.projection = camera.matrices.perspective;
shaderData.values.model = camera.matrices.view;
shaderData.values.viewPos = camera.viewPos;
shaderData.values.bFlagSet.x = normalMapping;
shaderData.values.bFlagSet.y = pbrEnabled;
memcpy(shaderData.buffer.mapped, &shaderData.values, sizeof(shaderData.values));
}
void VulkanExample::prepare()
{
VulkanExampleBase::prepare();
loadAssets();
GenerateBRDFLUT();
GenerateIrradianceCubemap();
GeneratePrefilteredCubemap();
prepareUniformBuffers();
setupDescriptors();
preparePipelines();
buildCommandBuffers();
prepared = true;
}
void VulkanExample::render()
{
renderFrame();
if (camera.updated) {
updateUniformBuffers();
}
if(!paused)
glTFModel.updateAnimation(frameTimer, shaderData.skinSSBO);
}
void VulkanExample::viewChanged()
{
updateUniformBuffers();
}
void VulkanExample::OnUpdateUIOverlay(vks::UIOverlay *overlay)
{
if (overlay->header("Settings")) {
if (overlay->checkBox("Wireframe", &wireframe)) {
buildCommandBuffers();
}
if (overlay->checkBox("NormalMapping", &normalMapping))
{
}
if (overlay->checkBox("ToneMapping", &ToneMapping))
{
CreateToneMappingPipeline();
}
if (overlay->checkBox("PbrIndirect", &pbrEnabled))
{
}
}
if (overlay->header("Animation"))
{
overlay->checkBox("Pause", &paused);
}
if (overlay->header("file"))
{
if (overlay->button("select model"))
{
GUIFunction guiFunc{};
if (guiFunc.openFileFolderDialog())
{
MessageBoxW(NULL, guiFunc.filePath, L"File Path", MB_OK);
}
else
{
std::cerr << "file select error" << std::endl;
}
}
}
}
VULKAN_EXAMPLE_MAIN()