Update 公式大全.md
	
		
			
	
		
	
	
		
			
				
	
				continuous-integration/drone/push Build is passing
				
					Details
				
			
		
	
				
					
				
			
				
	
				continuous-integration/drone/push Build is passing
				
					Details
				
			
		
	
							parent
							
								
									773da2e97c
								
							
						
					
					
						commit
						d2c1a18e98
					
				| 
						 | 
					@ -45,6 +45,16 @@ date: 2022-12-24T13:05:40+08:00
 | 
				
			||||||
      - [原函数和不定积分的基本概念](#原函数和不定积分的基本概念)
 | 
					      - [原函数和不定积分的基本概念](#原函数和不定积分的基本概念)
 | 
				
			||||||
      - [不定积分的基本性质](#不定积分的基本性质)
 | 
					      - [不定积分的基本性质](#不定积分的基本性质)
 | 
				
			||||||
      - [不定积分的基本积分公式](#不定积分的基本积分公式)
 | 
					      - [不定积分的基本积分公式](#不定积分的基本积分公式)
 | 
				
			||||||
 | 
					      - [不定积分计算方法](#不定积分计算方法)
 | 
				
			||||||
 | 
					      - [第一类换元法(凑微分法)](#第一类换元法凑微分法)
 | 
				
			||||||
 | 
					        - [第二类换元法(变量置换法)](#第二类换元法变量置换法)
 | 
				
			||||||
 | 
					          - [三角代换](#三角代换)
 | 
				
			||||||
 | 
					          - [根式代换](#根式代换)
 | 
				
			||||||
 | 
					          - [倒代换](#倒代换)
 | 
				
			||||||
 | 
					          - [指数代换](#指数代换)
 | 
				
			||||||
 | 
					          - [万能代换](#万能代换)
 | 
				
			||||||
 | 
					        - [组合积分法](#组合积分法)
 | 
				
			||||||
 | 
					      - [值得记忆的定积分公式](#值得记忆的定积分公式)
 | 
				
			||||||
- [线性代数](#线性代数)
 | 
					- [线性代数](#线性代数)
 | 
				
			||||||
  - [行列式](#行列式)
 | 
					  - [行列式](#行列式)
 | 
				
			||||||
    - [行列式定义和性质](#行列式定义和性质)
 | 
					    - [行列式定义和性质](#行列式定义和性质)
 | 
				
			||||||
| 
						 | 
					@ -310,6 +320,116 @@ date: 2022-12-24T13:05:40+08:00
 | 
				
			||||||
13. $\int {\frac{1}{\sqrt{a^2-x^2}}}dx=\arcsin \frac{x}{a} +C(a>0)$,$\int {\frac{1}{\sqrt{1-x^2}}}dx = \arctan x +C$
 | 
					13. $\int {\frac{1}{\sqrt{a^2-x^2}}}dx=\arcsin \frac{x}{a} +C(a>0)$,$\int {\frac{1}{\sqrt{1-x^2}}}dx = \arctan x +C$
 | 
				
			||||||
14. $\int {\frac{dx}{a^2-x^2}}dx=\frac{1}{2a}\ln |\frac{a+x}{a-x}| +C$
 | 
					14. $\int {\frac{dx}{a^2-x^2}}dx=\frac{1}{2a}\ln |\frac{a+x}{a-x}| +C$
 | 
				
			||||||
15. $\int {\frac{1}{\sqrt{x^2 \pm a^2}}}dx=\ln |x+\sqrt{x^2 \pm a^2}| +C$
 | 
					15. $\int {\frac{1}{\sqrt{x^2 \pm a^2}}}dx=\ln |x+\sqrt{x^2 \pm a^2}| +C$
 | 
				
			||||||
 | 
					16. $\int e^{ax}\cos bx dx = \frac{e^{ax}}{a^2+b^2}\left[a\cos bx + b \sin bx \right] + C$
 | 
				
			||||||
 | 
					17. $\int e^{ax} \sin bx dx = \frac{e^{ax}}{a^2+b^2}\left[a\sin bx + b \cos bx \right] + C$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#### 不定积分计算方法
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#### 第一类换元法(凑微分法)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					常见凑微分
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					1. $\int (x^n)\cdot x^{n-1} dx = \frac{1}{n} \int f(x^n)dx^n$
 | 
				
			||||||
 | 
					2. $\int f(\sqrt{x^3} ) \cdot \sqrt{x}dx = \frac{2}{3}\int f(\sqrt{x^3})d\sqrt{x^3}$
 | 
				
			||||||
 | 
					3. $\int(x+\sin x) \cdot (1+\cos x) dx = \int f(x+ \sin x)d(x+\sin x)$
 | 
				
			||||||
 | 
					4. $\int \frac{g(x)}{(1+x)^2}dx = \int g(x)d(-\frac{1}{1+x})$
 | 
				
			||||||
 | 
					5. $\int \frac{g(x)}{1-x^2}dx = \int g(x)d(\ln \frac{1+x}{1-x})$
 | 
				
			||||||
 | 
					6. $\int f(ax^2+bx+c) \cdot (2ax+b)dx = \int f(ax^2+bx+c)d(ax^2+bx+c)$
 | 
				
			||||||
 | 
					7. $\int g(x) \cdot e^x(1+x)dx = \int g(x)d(xe^x)$
 | 
				
			||||||
 | 
					8. $\int f(x+\frac{1}{x}) \cdot (1-\frac{1}{x^2})dx = \int xf(x+\frac{1}{x})d(x+\frac{1}{x})$
 | 
				
			||||||
 | 
					9. $\int f(x+\frac{1}{x}) \cdot (x-\frac{1}{x})dx = \int xf(x+\frac{1}{x})d(x+\frac{1}{x})$
 | 
				
			||||||
 | 
					10. $\int g(x) \cdot \frac{1}{\sqrt{1+x^2}}dx = \int g(x)d\ln(x+\sqrt{1+x^2})$
 | 
				
			||||||
 | 
					11. $\int g(x) \cdot \frac{1}{1+x^2}dx = \int g(x)d\arctan x = -\int g(x)d\arctan \frac{1}{x}$
 | 
				
			||||||
 | 
					12. $\int f(1-\frac{1}{x}) \cdot \frac{1}{x(x-1)}dx = \int f(1-\frac{1}{x}) \cdot \frac{1}{1-\frac{1}{x}} \cdot \frac{1}{x^2}dx = \int f(1-\frac{1}{x})d\ln(1-\frac{1}{x})$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					##### 第二类换元法(变量置换法)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					**_计算后必须回代_**
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					###### 三角代换
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					1. 若$R(-\sin x , \cos x) = -R(\sin x,\cos x)$,令$u=\cos x$或凑微分$d\cos x$
 | 
				
			||||||
 | 
					2. 若$R(\sin x , -\cos x) = -R(\sin x,\cos x)$,令$u=\sin x$或凑微分$d\sin x$
 | 
				
			||||||
 | 
					3. 若$R(-\sin x , -\cos x) = R(\sin x,\cos x)$,令$u=\tan x$或凑微分$d\tan x$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					或
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					1. 被积函数含有$\sqrt{a^2-x^2}$,令$x=a\sin t (或a \cos t)$
 | 
				
			||||||
 | 
					2. 被积函数含有$\sqrt{a^2+x^2}$,令$x=a\tan t $
 | 
				
			||||||
 | 
					3. 被积函数含有$\sqrt{x^2 - a^2}$,令$x=a\sin t$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					###### 根式代换
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					对根式进行代换
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					如$\int\frac{\sqrt{x}}{1+\sqrt{x}^3}$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					取$t=x^{\frac{1}{6}},t^6 = x => dx=6t^5dt$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					###### 倒代换
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					将x替换为对应倒数(通常分母次数比分子高)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					例如$\int \frac{1}{x^2 \sqrt{x^2+1}}dx$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					令$x = \frac{1}{t}$,则$dx = -\frac{dt}{t^2}$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					###### 指数代换
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					将指数替换为t
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					例如$\int \frac{1}{\sqrt{1+e^x}}dx$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					$\int \frac{1}{e^x\sqrt{1+e^x}}dx = \int \frac{de^x}{e^x\sqrt{1+e^x}} \underrightarrow{t = e^x} \int \frac{dt}{t\sqrt{1+t}} $
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					###### 万能代换
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					对于形如$\int R(\cos x ,\sin x)dx$的不定积分
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					可换元
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					$$
 | 
				
			||||||
 | 
					\cos x = \frac{1-t^2}{1+t^2}
 | 
				
			||||||
 | 
					$$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					$$
 | 
				
			||||||
 | 
					\sin x = \frac{2t}{1+t^2}
 | 
				
			||||||
 | 
					$$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					原积分转化为$\int R(\frac{1-t^2}{1+t^2},\frac{2t}{1+t^2})\frac{2}{1+t^2}dt$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					##### 组合积分法
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					对于
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					$$
 | 
				
			||||||
 | 
					\int \frac{dx}{(ax+b)(mx+n)}
 | 
				
			||||||
 | 
					$$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					可令
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					$$
 | 
				
			||||||
 | 
					I=\int \frac{dx}{(ax+b)(mx+n)}
 | 
				
			||||||
 | 
					$$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					$$
 | 
				
			||||||
 | 
					J=\int \frac{xdx}{(ax+b)(mx+n)}
 | 
				
			||||||
 | 
					$$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					$$
 | 
				
			||||||
 | 
					\begin{cases}
 | 
				
			||||||
 | 
					  bI+aJ = \int \frac{(ax+b)dx}{(ax+b)(mx+n)} = \frac{1}{m} \ln|mx+n|+C_1 \\\\
 | 
				
			||||||
 | 
					  nI+mJ = \int \frac{(mx+n)dx}{(ax+b)(mx+n)} = \frac{1}{a} \ln|ax+b|+C_2
 | 
				
			||||||
 | 
					\end{cases}
 | 
				
			||||||
 | 
					$$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					$$
 | 
				
			||||||
 | 
					I = \frac{1}{bm-an} \ln|\frac{mx+n}{ax+b}| +C
 | 
				
			||||||
 | 
					$$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#### 值得记忆的定积分公式
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
---
 | 
					---
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in New Issue