244 lines
7.6 KiB
Markdown
244 lines
7.6 KiB
Markdown
---
|
||
title: "3D基本变换和观测变换(viewing transform)"
|
||
date: 2022-05-10T09:10:25+08:00
|
||
|
||
---
|
||
## 3D基本变换
|
||
|
||
### 平移矩阵
|
||
通常处理三维中对模型进行平移的行为
|
||
|
||
<br>$T(t_x,t_y,t_z) = \begin{pmatrix} 1 &0 &0 &t_x \\\\ 0 &1 &0 &t_y \\\\ 0 &0 &0 &t_z \\\\ 0 &0 &0 &1 \end{pmatrix} $<br>
|
||
|
||
|
||
$t_x,t_y,t_z$通常表示对应轴上平移的距离
|
||
|
||
--------------------------
|
||
|
||
### 缩放矩阵
|
||
通常处理三维中对模型进行缩放的行为
|
||
|
||
$S(s_x,s_y,s_z) = \begin{pmatrix} s_x &0 &0 &0 \\\\0 &s_y &0 &0 \\\\ 0 &0 &s_z &0 \\\\ 0 &0 &0 &1 \end{pmatrix} $
|
||
|
||
$s_x,s_y,s_z$通常表示对应xyz轴的缩放比例
|
||
|
||
-------------------------------------------
|
||
|
||
### 旋转矩阵
|
||
这个矩阵通常处理三维中对模型绕坐标轴进行旋转的行为
|
||
|
||
-------------
|
||
|
||
绕x轴旋转的矩阵为
|
||
$\begin{pmatrix} 1 &0 &0 &0 \\\\ 0 &cos(r) &-sin(r) &0 \\\\ 0 &sin(r) &cos(r) &0 \\\\ 0 &0 &0 &1 \end{pmatrix} $
|
||
|
||
---------------------
|
||
绕y轴旋转的矩阵为
|
||
$\begin{pmatrix} cos(r) &0 &sin(r) &0 \\\\ 0 &1 &0 &0 \\\\ -sin(r) &0 &cos(r) &0 \\\\ 0 &0 &0 &1 \end{pmatrix} $
|
||
|
||
-----------------------
|
||
|
||
绕z轴旋转的矩阵为
|
||
$\begin{pmatrix} cos(r) &-sin(r) &0 &0 \\\\ sin(r) &cos(r) &0 &0 \\\\ 0 &0 &1 &0 \\\\ 0 &0 &0 &1 \end{pmatrix} $
|
||
|
||
----------------------
|
||
对于给定三个旋转角度的旋转,通常使用欧拉角
|
||
|
||
$R_{xyz}(\alpha,\beta,\gamma)=R_x(\alpha)R_y(\beta)R_z(\gamma)$
|
||
|
||
此时的三个旋转方向将被称为roll,pich,yaw
|
||
|
||

|
||
|
||
-----------------------
|
||
|
||
对于围绕某一特定点进行旋转的行为,则将该点平移至原点处后视为绕特定轴旋转
|
||

|
||
|
||
|
||
---------------------------
|
||
|
||
|
||
|
||
### 视角变换矩阵
|
||
这个矩阵通常用来定义相机对应的视角朝向,利用这个矩阵来将相机位置移动到原点,便于后续的模型进行平移旋转等变换
|
||
|
||
```c++
|
||
Eigen::Matrix4f view = Eigen::Matrix4f::Identity();
|
||
|
||
Eigen::Matrix4f translate;
|
||
translate << 1, 0, 0, -eye_pos[0],
|
||
0, 1, 0, -eye_pos[1],
|
||
0, 0, 1, -eye_pos[2],
|
||
0, 0, 0, 1;
|
||
|
||
view = translate * view;//移动相机位置到顶点
|
||
```
|
||
|
||
在上述代码中,eye_pos(x,y,z,1)往往为相机的位置
|
||
|
||
-----------------------------------------------------------
|
||
|
||
### 正交/投影矩阵
|
||
|
||
#### 正交矩阵
|
||
|
||
正交矩阵将使摄像头置于坐标系原点,看向-Z轴方向,可以在Y轴上平行移动。
|
||
最终结果将表现为在XY轴平面上的2D图像,让模型坐标归一化到[-1,1]之间
|
||
|
||
----------------------------------
|
||
|
||
总体流程
|
||
|
||
为了将一个$[l,r]\times[b,t]\times[f,n]$的长方体转换为符合canonical(正则、规范、标准)的正方体,我们需要进行两步操作
|
||
|
||
第一步
|
||
|
||
平移这个长方体到坐标系的原点
|
||
|
||
对应矩阵$M_{translate}=\begin{bmatrix} \frac{2}{r-l} &0 &0 &0 \\\\ 0 &\frac{2}{t-b} &0 &0 \\\\ 0 &0 &0 &\frac{2}{n-f} \\\\ 0 &0 &0 &1 \end{bmatrix}$
|
||
|
||
第二步
|
||
|
||
缩放这个长方体到符合正则、规范、标准的正方体
|
||
|
||
对应矩阵$M_{scale}=\begin{bmatrix} 1 &0 &0 &-\frac{r+l}{2} \\\\ 0 &1 &0 &-\frac{t+b}{2} \\\\ 0 &0 &1 &-\frac{n+f}{2} \\\\ 0 &0 &0 &1 \end{bmatrix}$
|
||
|
||
由第一二步可得出
|
||
|
||
正交矩阵为$M_{ortho}=\begin{bmatrix} \frac{2}{r-l} &0 &0 &0 \\\\ 0 &\frac{2}{t-b} &0 &0 \\\\ 0 &0 &0 &\frac{2}{n-f} \\\\ 0 &0 &0 &1 \end{bmatrix}\times\begin{bmatrix} 1 &0 &0 &-\frac{r+l}{2} \\\\ 0 &1 &0 &-\frac{t+b}{2} \\\\ 0 &0 &1 &-\frac{n+f}{2} \\\\ 0 &0 &0 &1 \end{bmatrix}$
|
||
|
||
图示
|
||
|
||

|
||
|
||
--------------------
|
||
|
||
#### 投影矩阵
|
||
|
||
投影矩阵将使模型满足自然界透视效果,如物体近大远小、所有的平行线变得不再平行,总会交于一点
|
||
|
||
------
|
||
|
||
推导过程
|
||
|
||
|
||
|
||
将远平面与近平面连线形成的梯形“挤压”到成为一个正方体
|
||
|
||
24R8DF[AB98E9]@1.png)
|
||
|
||
挤压的过程对梯形做横切面可知,计算挤压后的坐标点值实质上为计算相似三角形
|
||
|
||
如下图,可知挤压后的坐标与之前的坐标存在的数学关系为
|
||

|
||
|
||
$$y^{'}=\frac{n}{z}y$$ $$x^{'}=\frac{n}{z}x$$
|
||
|
||
由此可知经过“挤压”后的坐标为
|
||
$$M_{persp->ortho}\times\begin{pmatrix}
|
||
x \\\\ y \\\\ z \\\\ 1
|
||
\end{pmatrix}=\begin{pmatrix}
|
||
nx \\\\ ny \\\\ {未知} \\\\ z
|
||
\end{pmatrix}$$
|
||
|
||
所以
|
||
$$M_{persp->ortho}=\begin{pmatrix}
|
||
n &0 &0 &0 \\\\ 0 &n &0 &0 \\\\ ? &? &? &? \\\\ 0 &0 &1 &0
|
||
\end{pmatrix}$$
|
||
|
||
又由远平面在被“挤压”后相当于近平面做正交投影得到的远平面,可知
|
||
|
||
1. 任何在近平面上的点的坐标在“挤压”的过程中不发生改变
|
||
2. 任何在远平面的点的坐标中的Z值不发生改变,即$$\begin{pmatrix}
|
||
0 \\\\ 0 \\\\ f \\\\ 1
|
||
\end{pmatrix}\rArr\begin{pmatrix}
|
||
0 \\\\ 0 \\\\ f \\\\ 1
|
||
\end{pmatrix}==\begin{pmatrix}
|
||
0 \\\\ 0 \\\\ f^2 \\\\ f
|
||
\end{pmatrix}$$
|
||
|
||
在将上述坐标公式中Z的值以n替换之后可得
|
||
$$\begin{pmatrix}
|
||
x \\\\ y \\\\ n \\\\ 1
|
||
\end{pmatrix}\rArr\begin{pmatrix}
|
||
x \\\\ y \\\\ n \\\\ 1
|
||
\end{pmatrix}==\begin{pmatrix}
|
||
nx \\\\ ny \\\\ n^2 \\\\ n
|
||
\end{pmatrix}$$
|
||
据此,可推测第三行未知坐标值符合以下关系
|
||
$$\begin{pmatrix}
|
||
0 &0 &A &B
|
||
\end{pmatrix}\begin{pmatrix}
|
||
x \\\\ y \\\\ n \\\\ 1
|
||
\end{pmatrix}=n^2$$
|
||
因此
|
||
$$An+B=n^2$$
|
||
联立性质2推导的
|
||
$$Af+B=f^2$$
|
||
可得出
|
||
$$A=n+f$$
|
||
$$B=-nf$$
|
||
|
||
所以
|
||
$$M_{persp}=M_{ortho}M_{persp->ortho}=$$
|
||
$$\begin{pmatrix} \frac{2}{r-l} &0 &0 &0 \\\\ 0 &\frac{2}{t-b} &0 &0 \\\\ 0 &0 &0 &\frac{2}{n-f} \\\\ 0 &0 &0 &1 \end{pmatrix}$$
|
||
$$\times$$
|
||
$$\begin{pmatrix} 1 &0 &0 &-\frac{r+l}{2} \\\\ 0 &1 &0 &-\frac{t+b}{2} \\\\ 0 &0 &1 &-\frac{n+f}{2} \\\\ 0 &0 &0 &1 \end{pmatrix}$$
|
||
$$\times$$
|
||
$$\begin{pmatrix} n &0 &0 &0 \\\\ 0 &n &0 &0 \\\\ 0 &0 &n+f &-nf \\\\ 0 &0 &1 &0 \end{pmatrix}$$
|
||
|
||
----------------------------------------------
|
||
#### 涉及FovY的投影矩阵
|
||
FovY表示视域,即摄像机在固定时能看到的最大角度或最低角度的范围
|
||
|
||
Aspect ratio 表示纵横比,投影平面的长宽比
|
||

|
||
|
||
对应的相似三角形关系不变,参数改变
|
||

|
||
可得如下关系
|
||
$$\tan{\frac{fovY}{2}}=\frac{t}{|n|}$$
|
||
$$aspect=\frac{r}{t}$$
|
||
因此
|
||
$$t=near\times tan(\frac{fovY}{2})$$
|
||
|
||
$$r=aspect\times near\times tan(\frac{fovY}{2})$$
|
||
$$l=-aspect\times near \times tan(fovY/2)$$
|
||
带入上述由l,b,n,f构成的矩阵可得
|
||
$$M_{persp->ortho}$$
|
||
$$=$$
|
||
$$\begin{pmatrix} \frac{2}{r-l} &0 &0 &0 \\\\ 0 &\frac{2}{t-b} &0 &0 \\\\ 0 &0 &\frac{2}{n-f} &0 \\\\ 0 &0 &0 &1 \end{pmatrix}$$
|
||
$$\times$$
|
||
$$\begin{pmatrix} 1 &0 &0 &-\frac{r+l}{2} \\\\ 0 &1 &0 &-\frac{t+b}{2} \\\\ 0 &0 &1 &-\frac{n+f}{2} \\\\ 0 &0 &0 &1 \end{pmatrix}$$
|
||
$$=$$
|
||
|
||
$$\begin{pmatrix}
|
||
\frac{\frac{\cot{FovY}}{2}}{apsect*near} &0 &0 &0 \\\\ 0 & \frac{\frac{\cot{FovY}}{2}}{near} & 0 & 0 \\\\ 0 & 0 & \frac{2}{near-far} & 0 \\\\ 0 & 0 & 0 & 1
|
||
\end{pmatrix}$$
|
||
|
||
$$\times$$
|
||
|
||
$$\begin{pmatrix}
|
||
1 &0 &0 &0 \\\\ 0 &1 &0 &0 \\\\ 0 &0 &1 &-\frac{near+far}{2} \\\\ 0 &0 &0 &1
|
||
\end{pmatrix}$$
|
||
|
||
$$=$$
|
||
|
||
$$\begin{pmatrix}
|
||
\frac{\frac{\cot{FovY}}{2}}{apsect * near} &0 &0 &0 \\\\ 0 &\frac{\frac{\cot{FovY}}{2}}{near} &0 &0 \\\\ 0 &0 &\frac{2}{near-far} &-\frac{near+far}{near-far} \\\\ 0 &0 &0 &1
|
||
\end{pmatrix}$$
|
||
|
||
----------------
|
||
#### 视口变换
|
||
|
||
经过MVP矩阵计算后得到的一个正则的正方体需要将X轴和Y轴上的坐标映射到屏幕坐标[0,width]$\times$[0,height]
|
||
|
||
变换时需要先将[-1,1]缩放到屏幕大小[width,height],再进行平移使得原点坐标与屏幕原点对齐
|
||
|
||
变换矩阵
|
||
$$M_{viewport}=\begin{bmatrix}
|
||
\frac{width}{2} &0 &0 &\frac{width}{2} \\\\ 0 &\frac{height}{2} &0 &\frac{height}{2} \\\\ 0 &0 &1 &0 \\\\ 0 &0 &0 &1
|
||
\end{bmatrix}$$
|
||
|