init
							parent
							
								
									2aa0ab76d1
								
							
						
					
					
						commit
						f8212fca5e
					
				| 
						 | 
				
			
			@ -17,15 +17,106 @@
 | 
			
		|||
 * If you are looking for a complete glTF implementation, check out https://github.com/SaschaWillems/Vulkan-glTF-PBR/
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#define TINYGLTF_IMPLEMENTATION
 | 
			
		||||
#define STB_IMAGE_IMPLEMENTATION
 | 
			
		||||
#define TINYGLTF_NO_STB_IMAGE_WRITE
 | 
			
		||||
#ifdef VK_USE_PLATFORM_ANDROID_KHR
 | 
			
		||||
#define TINYGLTF_ANDROID_LOAD_FROM_ASSETS
 | 
			
		||||
#endif
 | 
			
		||||
#include "tiny_gltf.h"
 | 
			
		||||
 | 
			
		||||
#include "homework1.h"
 | 
			
		||||
#include "vulkanexamplebase.h"
 | 
			
		||||
 | 
			
		||||
glm::mat4 VulkanglTFModel::Node::getLocalMatrix()
 | 
			
		||||
#define ENABLE_VALIDATION false
 | 
			
		||||
 | 
			
		||||
// Contains everything required to render a glTF model in Vulkan
 | 
			
		||||
// This class is heavily simplified (compared to glTF's feature set) but retains the basic glTF structure
 | 
			
		||||
class VulkanglTFModel
 | 
			
		||||
{
 | 
			
		||||
	return glm::translate(glm::mat4(1.0f), translation) * glm::mat4(rotation) * glm::scale(glm::mat4(1.0f), scale) * matrix;
 | 
			
		||||
}
 | 
			
		||||
public:
 | 
			
		||||
	// The class requires some Vulkan objects so it can create it's own resources
 | 
			
		||||
	vks::VulkanDevice* vulkanDevice;
 | 
			
		||||
	VkQueue copyQueue;
 | 
			
		||||
 | 
			
		||||
VulkanglTFModel::~VulkanglTFModel()
 | 
			
		||||
	// The vertex layout for the samples' model
 | 
			
		||||
	struct Vertex {
 | 
			
		||||
		glm::vec3 pos;
 | 
			
		||||
		glm::vec3 normal;
 | 
			
		||||
		glm::vec2 uv;
 | 
			
		||||
		glm::vec3 color;
 | 
			
		||||
	};
 | 
			
		||||
 | 
			
		||||
	// Single vertex buffer for all primitives
 | 
			
		||||
	struct {
 | 
			
		||||
		VkBuffer buffer;
 | 
			
		||||
		VkDeviceMemory memory;
 | 
			
		||||
	} vertices;
 | 
			
		||||
 | 
			
		||||
	// Single index buffer for all primitives
 | 
			
		||||
	struct {
 | 
			
		||||
		int count;
 | 
			
		||||
		VkBuffer buffer;
 | 
			
		||||
		VkDeviceMemory memory;
 | 
			
		||||
	} indices;
 | 
			
		||||
 | 
			
		||||
	// The following structures roughly represent the glTF scene structure
 | 
			
		||||
	// To keep things simple, they only contain those properties that are required for this sample
 | 
			
		||||
	struct Node;
 | 
			
		||||
 | 
			
		||||
	// A primitive contains the data for a single draw call
 | 
			
		||||
	struct Primitive {
 | 
			
		||||
		uint32_t firstIndex;
 | 
			
		||||
		uint32_t indexCount;
 | 
			
		||||
		int32_t materialIndex;
 | 
			
		||||
	};
 | 
			
		||||
 | 
			
		||||
	// Contains the node's (optional) geometry and can be made up of an arbitrary number of primitives
 | 
			
		||||
	struct Mesh {
 | 
			
		||||
		std::vector<Primitive> primitives;
 | 
			
		||||
	};
 | 
			
		||||
 | 
			
		||||
	// A node represents an object in the glTF scene graph
 | 
			
		||||
	struct Node {
 | 
			
		||||
		Node* parent;
 | 
			
		||||
		std::vector<Node*> children;
 | 
			
		||||
		Mesh mesh;
 | 
			
		||||
		glm::mat4 matrix;
 | 
			
		||||
		~Node() {
 | 
			
		||||
			for (auto& child : children) {
 | 
			
		||||
				delete child;
 | 
			
		||||
			}
 | 
			
		||||
		}
 | 
			
		||||
	};
 | 
			
		||||
 | 
			
		||||
	// A glTF material stores information in e.g. the texture that is attached to it and colors
 | 
			
		||||
	struct Material {
 | 
			
		||||
		glm::vec4 baseColorFactor = glm::vec4(1.0f);
 | 
			
		||||
		uint32_t baseColorTextureIndex;
 | 
			
		||||
	};
 | 
			
		||||
 | 
			
		||||
	// Contains the texture for a single glTF image
 | 
			
		||||
	// Images may be reused by texture objects and are as such separated
 | 
			
		||||
	struct Image {
 | 
			
		||||
		vks::Texture2D texture;
 | 
			
		||||
		// We also store (and create) a descriptor set that's used to access this texture from the fragment shader
 | 
			
		||||
		VkDescriptorSet descriptorSet;
 | 
			
		||||
	};
 | 
			
		||||
 | 
			
		||||
	// A glTF texture stores a reference to the image and a sampler
 | 
			
		||||
	// In this sample, we are only interested in the image
 | 
			
		||||
	struct Texture {
 | 
			
		||||
		int32_t imageIndex;
 | 
			
		||||
	};
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
		Model data
 | 
			
		||||
	*/
 | 
			
		||||
	std::vector<Image> images;
 | 
			
		||||
	std::vector<Texture> textures;
 | 
			
		||||
	std::vector<Material> materials;
 | 
			
		||||
	std::vector<Node*> nodes;
 | 
			
		||||
 | 
			
		||||
	~VulkanglTFModel()
 | 
			
		||||
	{
 | 
			
		||||
		for (auto node : nodes) {
 | 
			
		||||
			delete node;
 | 
			
		||||
| 
						 | 
				
			
			@ -41,10 +132,6 @@ VulkanglTFModel::~VulkanglTFModel()
 | 
			
		|||
			vkDestroySampler(vulkanDevice->logicalDevice, image.texture.sampler, nullptr);
 | 
			
		||||
			vkFreeMemory(vulkanDevice->logicalDevice, image.texture.deviceMemory, nullptr);
 | 
			
		||||
		}
 | 
			
		||||
		for (Skin skin : skins)
 | 
			
		||||
		{
 | 
			
		||||
			skin.ssbo.destroy();
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
| 
						 | 
				
			
			@ -53,7 +140,7 @@ VulkanglTFModel::~VulkanglTFModel()
 | 
			
		|||
		The following functions take a glTF input model loaded via tinyglTF and convert all required data into our own structure
 | 
			
		||||
	*/
 | 
			
		||||
 | 
			
		||||
	void VulkanglTFModel::loadImages(tinygltf::Model& input)
 | 
			
		||||
	void loadImages(tinygltf::Model& input)
 | 
			
		||||
	{
 | 
			
		||||
		// Images can be stored inside the glTF (which is the case for the sample model), so instead of directly
 | 
			
		||||
		// loading them from disk, we fetch them from the glTF loader and upload the buffers
 | 
			
		||||
| 
						 | 
				
			
			@ -89,7 +176,7 @@ VulkanglTFModel::~VulkanglTFModel()
 | 
			
		|||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	void VulkanglTFModel::loadTextures(tinygltf::Model& input)
 | 
			
		||||
	void loadTextures(tinygltf::Model& input)
 | 
			
		||||
	{
 | 
			
		||||
		textures.resize(input.textures.size());
 | 
			
		||||
		for (size_t i = 0; i < input.textures.size(); i++) {
 | 
			
		||||
| 
						 | 
				
			
			@ -97,7 +184,7 @@ VulkanglTFModel::~VulkanglTFModel()
 | 
			
		|||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	void VulkanglTFModel::loadMaterials(tinygltf::Model& input)
 | 
			
		||||
	void loadMaterials(tinygltf::Model& input)
 | 
			
		||||
	{
 | 
			
		||||
		materials.resize(input.materials.size());
 | 
			
		||||
		for (size_t i = 0; i < input.materials.size(); i++) {
 | 
			
		||||
| 
						 | 
				
			
			@ -113,478 +200,171 @@ VulkanglTFModel::~VulkanglTFModel()
 | 
			
		|||
			}
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
	//glTF nodes loading helper function
 | 
			
		||||
	//rewrite node loader,simplify logic
 | 
			
		||||
	//Search node from parent to children by index
 | 
			
		||||
	VulkanglTFModel::Node* VulkanglTFModel::findNode(Node* parent, uint32_t index)
 | 
			
		||||
	{
 | 
			
		||||
		Node* nodeFound = nullptr;
 | 
			
		||||
		if (parent->index == index)
 | 
			
		||||
		{
 | 
			
		||||
			return parent;
 | 
			
		||||
		}
 | 
			
		||||
		for (auto &child : parent->children)
 | 
			
		||||
		{
 | 
			
		||||
			nodeFound = findNode(child, index);
 | 
			
		||||
			if (nodeFound)
 | 
			
		||||
			{
 | 
			
		||||
				break;
 | 
			
		||||
			}
 | 
			
		||||
		}
 | 
			
		||||
		return nodeFound;
 | 
			
		||||
}	//iterate vector of nodes to check weather nodes exist or not
 | 
			
		||||
	VulkanglTFModel::Node* VulkanglTFModel::nodeFromIndex(uint32_t index)
 | 
			
		||||
	{
 | 
			
		||||
		Node* nodeFound = nullptr;
 | 
			
		||||
		for (auto& node : nodes)
 | 
			
		||||
		{
 | 
			
		||||
			nodeFound = findNode(node, index);
 | 
			
		||||
			if (nodeFound)
 | 
			
		||||
			{
 | 
			
		||||
				break;
 | 
			
		||||
			}
 | 
			
		||||
		}
 | 
			
		||||
		return nodeFound;
 | 
			
		||||
	}
 | 
			
		||||
	
 | 
			
		||||
	//animation loader
 | 
			
		||||
	void VulkanglTFModel::loadAnimations(tinygltf::Model& input)
 | 
			
		||||
	{
 | 
			
		||||
		animations.resize(input.animations.size());
 | 
			
		||||
 | 
			
		||||
		for (size_t i = 0; i < input.animations.size(); i++)
 | 
			
		||||
		{
 | 
			
		||||
			tinygltf::Animation glTFAnimation = input.animations[i];
 | 
			
		||||
			animations[i].name = glTFAnimation.name;
 | 
			
		||||
 | 
			
		||||
			animations[i].samplers.resize(glTFAnimation.samplers.size());
 | 
			
		||||
			for (size_t j = 0; j < glTFAnimation.samplers.size(); j++)
 | 
			
		||||
			{
 | 
			
		||||
				tinygltf::AnimationSampler glTFSampler = glTFAnimation.samplers[j];
 | 
			
		||||
				AnimationSampler& dstSampler = animations[i].samplers[j];
 | 
			
		||||
				dstSampler.interpolation = glTFSampler.interpolation;
 | 
			
		||||
				//sample keyframes to input
 | 
			
		||||
				{
 | 
			
		||||
					const tinygltf::Accessor& accessor = input.accessors[glTFSampler.input];
 | 
			
		||||
					const tinygltf::BufferView& bufferView = input.bufferViews[accessor.bufferView];
 | 
			
		||||
					const tinygltf::Buffer& buffer = input.buffers[bufferView.buffer];
 | 
			
		||||
					//data pointer
 | 
			
		||||
					const void* dataptr = &buffer.data[accessor.byteOffset + bufferView.byteOffset];
 | 
			
		||||
					const float* buf = static_cast<const float*>(dataptr);
 | 
			
		||||
 | 
			
		||||
					for (size_t index = 0; index < accessor.count; index++)
 | 
			
		||||
					{
 | 
			
		||||
						dstSampler.inputs.push_back(buf[index]);
 | 
			
		||||
					}
 | 
			
		||||
					//switch value for correct start and end time
 | 
			
		||||
					for (auto input : animations[i].samplers[j].inputs)
 | 
			
		||||
					{
 | 
			
		||||
						if (input < animations[i].start)
 | 
			
		||||
						{
 | 
			
		||||
							animations[i].start = input;
 | 
			
		||||
						};
 | 
			
		||||
						if (input > animations[i].end)
 | 
			
		||||
						{
 | 
			
		||||
							animations[i].end = input;
 | 
			
		||||
						}
 | 
			
		||||
					}
 | 
			
		||||
				}
 | 
			
		||||
				//identify accessor type for keyframes to output translate/rotate/scale values
 | 
			
		||||
				{
 | 
			
		||||
					const tinygltf::Accessor& accessor = input.accessors[glTFSampler.input];
 | 
			
		||||
					const tinygltf::BufferView& bufferView = input.bufferViews[accessor.bufferView];
 | 
			
		||||
					const tinygltf::Buffer& buffer = input.buffers[bufferView.buffer];
 | 
			
		||||
					//data pointer
 | 
			
		||||
					const void* dataptr = &buffer.data[accessor.byteOffset + bufferView.byteOffset];
 | 
			
		||||
					
 | 
			
		||||
					switch (accessor.type)
 | 
			
		||||
					{
 | 
			
		||||
					case TINYGLTF_TYPE_VEC3:
 | 
			
		||||
					{
 | 
			
		||||
						const glm::vec3* buf = static_cast<const glm::vec3*> (dataptr);
 | 
			
		||||
						for (size_t index = 0; index < accessor.count; index++)
 | 
			
		||||
						{
 | 
			
		||||
							dstSampler.outputsVec4.push_back(glm::vec4(buf[index], 0.0f));
 | 
			
		||||
 | 
			
		||||
						}
 | 
			
		||||
						break;
 | 
			
		||||
					}
 | 
			
		||||
					case TINYGLTF_TYPE_VEC4:
 | 
			
		||||
					{
 | 
			
		||||
						const glm::vec4* buf = static_cast<const glm::vec4*>(dataptr);
 | 
			
		||||
						for (size_t index = 0; index < accessor.count; index++)
 | 
			
		||||
						{
 | 
			
		||||
							dstSampler.outputsVec4.push_back(buf[index]);
 | 
			
		||||
						}
 | 
			
		||||
						break;
 | 
			
		||||
					}
 | 
			
		||||
					default:
 | 
			
		||||
					{
 | 
			
		||||
						std::cout << "unknown type in accessor" << std::endl;
 | 
			
		||||
					}
 | 
			
		||||
					break;
 | 
			
		||||
					}
 | 
			
		||||
				}
 | 
			
		||||
			}
 | 
			
		||||
			animations[i].channels.resize(glTFAnimation.channels.size());
 | 
			
		||||
			for (size_t j = 0; j < glTFAnimation.channels.size(); j++)
 | 
			
		||||
			{
 | 
			
		||||
				tinygltf::AnimationChannel glTFChannel = glTFAnimation.channels[j];
 | 
			
		||||
				AnimationChannel& dstChannel = animations[i].channels[j];
 | 
			
		||||
				dstChannel.path = glTFChannel.target_path;
 | 
			
		||||
				dstChannel.samplerIndex = glTFChannel.sampler;
 | 
			
		||||
				dstChannel.node = nodeFromIndex(glTFChannel.target_node);
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		
 | 
			
		||||
	}
 | 
			
		||||
	//node loader
 | 
			
		||||
	void VulkanglTFModel::loadNode(const tinygltf::Node& inputNode, const tinygltf::Model& input, VulkanglTFModel::Node* parent, uint32_t nodeIndex, std::vector<uint32_t>& indexBuffer, std::vector<VulkanglTFModel::Vertex>& vertexBuffer)
 | 
			
		||||
	void loadNode(const tinygltf::Node& inputNode, const tinygltf::Model& input, VulkanglTFModel::Node* parent, std::vector<uint32_t>& indexBuffer, std::vector<VulkanglTFModel::Vertex>& vertexBuffer)
 | 
			
		||||
	{
 | 
			
		||||
		VulkanglTFModel::Node* node = new VulkanglTFModel::Node{};
 | 
			
		||||
		node->parent = parent;
 | 
			
		||||
		node->matrix = glm::mat4(1.0f);
 | 
			
		||||
		node->index = nodeIndex;
 | 
			
		||||
		node->skin = inputNode.skin;
 | 
			
		||||
		node->parent = parent;
 | 
			
		||||
 | 
			
		||||
		//get distributions of node
 | 
			
		||||
		if (inputNode.translation.size() == 3)
 | 
			
		||||
		{
 | 
			
		||||
			node->translation = glm::make_vec3(inputNode.translation.data());
 | 
			
		||||
		// Get the local node matrix
 | 
			
		||||
		// It's either made up from translation, rotation, scale or a 4x4 matrix
 | 
			
		||||
		if (inputNode.translation.size() == 3) {
 | 
			
		||||
			node->matrix = glm::translate(node->matrix, glm::vec3(glm::make_vec3(inputNode.translation.data())));
 | 
			
		||||
		}
 | 
			
		||||
		if (inputNode.scale.size() == 3)
 | 
			
		||||
		{
 | 
			
		||||
			node->scale = glm::make_vec3(inputNode.scale.data());
 | 
			
		||||
		}
 | 
			
		||||
		if (inputNode.rotation.size() == 4)
 | 
			
		||||
		{	//rotation is given by quaternion
 | 
			
		||||
		if (inputNode.rotation.size() == 4) {
 | 
			
		||||
			glm::quat q = glm::make_quat(inputNode.rotation.data());
 | 
			
		||||
			node->rotation = glm::mat4(q);
 | 
			
		||||
			node->matrix *= glm::mat4(q);
 | 
			
		||||
		}
 | 
			
		||||
		if (inputNode.matrix.size() == 16)
 | 
			
		||||
		{
 | 
			
		||||
		if (inputNode.scale.size() == 3) {
 | 
			
		||||
			node->matrix = glm::scale(node->matrix, glm::vec3(glm::make_vec3(inputNode.scale.data())));
 | 
			
		||||
		}
 | 
			
		||||
		if (inputNode.matrix.size() == 16) {
 | 
			
		||||
			node->matrix = glm::make_mat4x4(inputNode.matrix.data());
 | 
			
		||||
		};
 | 
			
		||||
 | 
			
		||||
		// Load node's children
 | 
			
		||||
		if (inputNode.children.size() > 0) {
 | 
			
		||||
			for (size_t i = 0; i < inputNode.children.size(); i++) {
 | 
			
		||||
				loadNode(input.nodes[inputNode.children[i]], input , node, indexBuffer, vertexBuffer);
 | 
			
		||||
			}
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		//find children of nodes if exists
 | 
			
		||||
		if (inputNode.children.size() > 0)
 | 
			
		||||
		{
 | 
			
		||||
			for (size_t i = 0; i < inputNode.children.size(); i++)
 | 
			
		||||
			{
 | 
			
		||||
				VulkanglTFModel::loadNode(input.nodes[inputNode.children[i]], input, node, inputNode.children[i], indexBuffer, vertexBuffer);
 | 
			
		||||
			}
 | 
			
		||||
			
 | 
			
		||||
		}
 | 
			
		||||
		//load meshes in nodes if exists
 | 
			
		||||
		if (inputNode.mesh > -1)
 | 
			
		||||
		{
 | 
			
		||||
		// If the node contains mesh data, we load vertices and indices from the buffers
 | 
			
		||||
		// In glTF this is done via accessors and buffer views
 | 
			
		||||
		if (inputNode.mesh > -1) {
 | 
			
		||||
			const tinygltf::Mesh mesh = input.meshes[inputNode.mesh];
 | 
			
		||||
			for (size_t i = 0; i < mesh.primitives.size(); i++)
 | 
			
		||||
			{
 | 
			
		||||
				const tinygltf::Primitive& glTFPrimmitive = mesh.primitives[i];
 | 
			
		||||
			// Iterate through all primitives of this node's mesh
 | 
			
		||||
			for (size_t i = 0; i < mesh.primitives.size(); i++) {
 | 
			
		||||
				const tinygltf::Primitive& glTFPrimitive = mesh.primitives[i];
 | 
			
		||||
				uint32_t firstIndex = static_cast<uint32_t>(indexBuffer.size());
 | 
			
		||||
				uint32_t vertexStart = static_cast<uint32_t>(vertexBuffer.size());
 | 
			
		||||
				uint32_t indexCount = 0;
 | 
			
		||||
				const float* positionBuffer = nullptr;
 | 
			
		||||
				const float* normalsBuffer = nullptr;
 | 
			
		||||
				const float* texcoordsBuffer = nullptr;
 | 
			
		||||
				const float* jointWeightsBuffer = nullptr;
 | 
			
		||||
				const uint16_t * jointIndicesBuffer = nullptr;
 | 
			
		||||
				size_t vertexCount = 0;
 | 
			
		||||
				bool hasSkin = false;
 | 
			
		||||
				//get buffer by index in primmitive.attributes
 | 
			
		||||
				// Vertices
 | 
			
		||||
				{
 | 
			
		||||
					if (glTFPrimmitive.attributes.find("POSITION") != glTFPrimmitive.attributes.end())
 | 
			
		||||
					{
 | 
			
		||||
						const tinygltf::Accessor& accessor = input.accessors[glTFPrimmitive.attributes.find("POSITION")->second];
 | 
			
		||||
						const tinygltf::BufferView view = input.bufferViews[accessor.bufferView];
 | 
			
		||||
						positionBuffer = reinterpret_cast<const float*> (&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset]));
 | 
			
		||||
					const float* positionBuffer = nullptr;
 | 
			
		||||
					const float* normalsBuffer = nullptr;
 | 
			
		||||
					const float* texCoordsBuffer = nullptr;
 | 
			
		||||
					size_t vertexCount = 0;
 | 
			
		||||
 | 
			
		||||
					// Get buffer data for vertex positions
 | 
			
		||||
					if (glTFPrimitive.attributes.find("POSITION") != glTFPrimitive.attributes.end()) {
 | 
			
		||||
						const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.attributes.find("POSITION")->second];
 | 
			
		||||
						const tinygltf::BufferView& view = input.bufferViews[accessor.bufferView];
 | 
			
		||||
						positionBuffer = reinterpret_cast<const float*>(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset]));
 | 
			
		||||
						vertexCount = accessor.count;
 | 
			
		||||
					}
 | 
			
		||||
					if (glTFPrimmitive.attributes.find("NORMAL") != glTFPrimmitive.attributes.end())
 | 
			
		||||
					{
 | 
			
		||||
						const tinygltf::Accessor& accessor = input.accessors[glTFPrimmitive.attributes.find("NORMAL")->second];
 | 
			
		||||
						const tinygltf::BufferView &view = input.bufferViews[accessor.bufferView];
 | 
			
		||||
						normalsBuffer = reinterpret_cast<const float*> (&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset]));
 | 
			
		||||
 | 
			
		||||
					// Get buffer data for vertex normals
 | 
			
		||||
					if (glTFPrimitive.attributes.find("NORMAL") != glTFPrimitive.attributes.end()) {
 | 
			
		||||
						const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.attributes.find("NORMAL")->second];
 | 
			
		||||
						const tinygltf::BufferView& view = input.bufferViews[accessor.bufferView];
 | 
			
		||||
						normalsBuffer = reinterpret_cast<const float*>(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset]));
 | 
			
		||||
					}
 | 
			
		||||
					if (glTFPrimmitive.attributes.find("TEXCOORD_0") != glTFPrimmitive.attributes.end())
 | 
			
		||||
					{
 | 
			
		||||
						const tinygltf::Accessor& accessor = input.accessors[glTFPrimmitive.attributes.find("TEXCOORD_0")->second];
 | 
			
		||||
						const tinygltf::BufferView &view = input.bufferViews[accessor.bufferView];
 | 
			
		||||
						texcoordsBuffer = reinterpret_cast<const float*> (&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset]));
 | 
			
		||||
 | 
			
		||||
					// Get buffer data for vertex texture coordinates
 | 
			
		||||
					// glTF supports multiple sets, we only load the first one
 | 
			
		||||
					if (glTFPrimitive.attributes.find("TEXCOORD_0") != glTFPrimitive.attributes.end()) {
 | 
			
		||||
						const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.attributes.find("TEXCOORD_0")->second];
 | 
			
		||||
						const tinygltf::BufferView& view = input.bufferViews[accessor.bufferView];
 | 
			
		||||
						texCoordsBuffer = reinterpret_cast<const float*>(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset]));
 | 
			
		||||
					}
 | 
			
		||||
					if (glTFPrimmitive.attributes.find("JOINTS_0") != glTFPrimmitive.attributes.end())
 | 
			
		||||
					{
 | 
			
		||||
						const tinygltf::Accessor& accessor = input.accessors[glTFPrimmitive.attributes.find("JOINTS_0")->second];
 | 
			
		||||
						const tinygltf::BufferView &view = input.bufferViews[accessor.bufferView];
 | 
			
		||||
						jointIndicesBuffer = reinterpret_cast<const uint16_t*> (&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset]));
 | 
			
		||||
 | 
			
		||||
					}
 | 
			
		||||
					if (glTFPrimmitive.attributes.find("WEIGHTS_0") != glTFPrimmitive.attributes.end())
 | 
			
		||||
					{
 | 
			
		||||
						const tinygltf::Accessor& accessor = input.accessors[glTFPrimmitive.attributes.find("WEIGHTS_0")->second];
 | 
			
		||||
						const tinygltf::BufferView &view = input.bufferViews[accessor.bufferView];
 | 
			
		||||
						jointWeightsBuffer = reinterpret_cast<const float*> (&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset]));
 | 
			
		||||
 | 
			
		||||
					}
 | 
			
		||||
					hasSkin = (jointIndicesBuffer && jointWeightsBuffer);
 | 
			
		||||
 | 
			
		||||
					for (size_t v = 0; v < vertexCount; v++)
 | 
			
		||||
					{
 | 
			
		||||
					// Append data to model's vertex buffer
 | 
			
		||||
					for (size_t v = 0; v < vertexCount; v++) {
 | 
			
		||||
						Vertex vert{};
 | 
			
		||||
						vert.pos = glm::vec4(glm::make_vec3(&positionBuffer[v * 3]), 1.0f);
 | 
			
		||||
						vert.uv = texcoordsBuffer ? glm::make_vec2(&texcoordsBuffer[v*2]):glm::vec4(0.0f);
 | 
			
		||||
						vert.normal = glm::normalize(glm::vec3(normalsBuffer ? glm::make_vec3(&normalsBuffer[v * 3]) : glm::vec3(0.0f)));
 | 
			
		||||
						vert.uv = texCoordsBuffer ? glm::make_vec2(&texCoordsBuffer[v * 2]) : glm::vec3(0.0f);
 | 
			
		||||
						vert.color = glm::vec3(1.0f);
 | 
			
		||||
						vert.jointIndices = hasSkin ? glm::vec4(glm::make_vec4(&jointIndicesBuffer[v * 4])) : glm::vec4(0.0f);
 | 
			
		||||
						vert.jointWeights = hasSkin ? glm::make_vec4(&jointWeightsBuffer[v * 4]) : glm::vec4(0.0f);
 | 
			
		||||
						vertexBuffer.push_back(vert);
 | 
			
		||||
					}
 | 
			
		||||
				}
 | 
			
		||||
				// Indices
 | 
			
		||||
				{
 | 
			
		||||
					const tinygltf::Accessor& accessor = input.accessors[glTFPrimmitive.indices];
 | 
			
		||||
					const tinygltf::BufferView& bufferview = input.bufferViews[accessor.bufferView];
 | 
			
		||||
					const tinygltf::Buffer& buffer = input.buffers[bufferview.buffer];
 | 
			
		||||
					const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.indices];
 | 
			
		||||
					const tinygltf::BufferView& bufferView = input.bufferViews[accessor.bufferView];
 | 
			
		||||
					const tinygltf::Buffer& buffer = input.buffers[bufferView.buffer];
 | 
			
		||||
 | 
			
		||||
					indexCount += static_cast<uint32_t>(accessor.count);
 | 
			
		||||
 | 
			
		||||
					switch (accessor.componentType)
 | 
			
		||||
					{
 | 
			
		||||
					// glTF supports different component types of indices
 | 
			
		||||
					switch (accessor.componentType) {
 | 
			
		||||
					case TINYGLTF_PARAMETER_TYPE_UNSIGNED_INT: {
 | 
			
		||||
						const uint32_t* buf = reinterpret_cast<const uint32_t*>(&buffer.data[accessor.byteOffset + bufferview.byteOffset]);
 | 
			
		||||
						for (size_t index = 0; index < accessor.count; index++)
 | 
			
		||||
						{
 | 
			
		||||
						const uint32_t* buf = reinterpret_cast<const uint32_t*>(&buffer.data[accessor.byteOffset + bufferView.byteOffset]);
 | 
			
		||||
						for (size_t index = 0; index < accessor.count; index++) {
 | 
			
		||||
							indexBuffer.push_back(buf[index] + vertexStart);
 | 
			
		||||
						}
 | 
			
		||||
						break;
 | 
			
		||||
 | 
			
		||||
					}
 | 
			
		||||
					case TINYGLTF_PARAMETER_TYPE_UNSIGNED_SHORT:{
 | 
			
		||||
						const uint16_t* buf = reinterpret_cast<const uint16_t*>(&buffer.data[accessor.byteOffset + bufferview.byteOffset]);
 | 
			
		||||
						for (size_t index = 0; index < accessor.count; index++)
 | 
			
		||||
						{
 | 
			
		||||
					case TINYGLTF_PARAMETER_TYPE_UNSIGNED_SHORT: {
 | 
			
		||||
						const uint16_t* buf = reinterpret_cast<const uint16_t*>(&buffer.data[accessor.byteOffset + bufferView.byteOffset]);
 | 
			
		||||
						for (size_t index = 0; index < accessor.count; index++) {
 | 
			
		||||
							indexBuffer.push_back(buf[index] + vertexStart);
 | 
			
		||||
						}
 | 
			
		||||
						break;
 | 
			
		||||
					}
 | 
			
		||||
					case TINYGLTF_PARAMETER_TYPE_UNSIGNED_BYTE: {
 | 
			
		||||
						const uint8_t* buf = reinterpret_cast<const uint8_t*>(&buffer.data[accessor.byteOffset + bufferview.byteOffset]);
 | 
			
		||||
						for (size_t index = 0; index < accessor.count; index++)
 | 
			
		||||
						{
 | 
			
		||||
						const uint8_t* buf = reinterpret_cast<const uint8_t*>(&buffer.data[accessor.byteOffset + bufferView.byteOffset]);
 | 
			
		||||
						for (size_t index = 0; index < accessor.count; index++) {
 | 
			
		||||
							indexBuffer.push_back(buf[index] + vertexStart);
 | 
			
		||||
						}
 | 
			
		||||
						break;
 | 
			
		||||
					}
 | 
			
		||||
					default:
 | 
			
		||||
						std::cerr << "index component type" << accessor.componentType << "not supported" << std::endl;
 | 
			
		||||
 | 
			
		||||
						std::cerr << "Index component type " << accessor.componentType << " not supported!" << std::endl;
 | 
			
		||||
						return;
 | 
			
		||||
					}
 | 
			
		||||
				}
 | 
			
		||||
				Primitive primitive{};
 | 
			
		||||
				primitive.firstIndex = firstIndex;
 | 
			
		||||
				primitive.indexCount = indexCount;
 | 
			
		||||
				primitive.materialIndex = glTFPrimmitive.material;
 | 
			
		||||
				primitive.materialIndex = glTFPrimitive.material;
 | 
			
		||||
				node->mesh.primitives.push_back(primitive);
 | 
			
		||||
				
 | 
			
		||||
			}
 | 
			
		||||
		}
 | 
			
		||||
		if (parent)
 | 
			
		||||
		{
 | 
			
		||||
 | 
			
		||||
		if (parent) {
 | 
			
		||||
			parent->children.push_back(node);
 | 
			
		||||
		}
 | 
			
		||||
		else
 | 
			
		||||
		{
 | 
			
		||||
		else {
 | 
			
		||||
			nodes.push_back(node);
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// load skins from glTF model
 | 
			
		||||
	void VulkanglTFModel::loadSkins(tinygltf::Model& input)
 | 
			
		||||
	{
 | 
			
		||||
		skins.resize(input.skins.size());
 | 
			
		||||
		std::cout << input.skins.size() << std::endl;
 | 
			
		||||
 | 
			
		||||
		for (size_t i = 0; i < input.skins.size(); i++)
 | 
			
		||||
		{
 | 
			
		||||
			tinygltf::Skin glTFSkin = input.skins[i];
 | 
			
		||||
 | 
			
		||||
			skins[i].name = glTFSkin.name;
 | 
			
		||||
			//follow the tree structure,find the root node of skeleton by index
 | 
			
		||||
			skins[i].skeletonRoot = nodeFromIndex(glTFSkin.skeleton);
 | 
			
		||||
 | 
			
		||||
			//join nodes
 | 
			
		||||
			for (int jointIndex : glTFSkin.joints)
 | 
			
		||||
			{
 | 
			
		||||
				Node* node = nodeFromIndex(jointIndex);
 | 
			
		||||
				if (node)
 | 
			
		||||
				{
 | 
			
		||||
					skins[i].joints.push_back(node);
 | 
			
		||||
				}
 | 
			
		||||
			}
 | 
			
		||||
			//get the inverse bind matrices
 | 
			
		||||
			if (glTFSkin.inverseBindMatrices > -1)
 | 
			
		||||
			{
 | 
			
		||||
				const tinygltf::Accessor& accessor = input.accessors[glTFSkin.inverseBindMatrices];
 | 
			
		||||
				const tinygltf::BufferView& bufferview = input.bufferViews[accessor.bufferView];
 | 
			
		||||
				const tinygltf::Buffer& buffer = input.buffers[bufferview.buffer];
 | 
			
		||||
				skins[i].inverseBindMatrices.resize(accessor.count);
 | 
			
		||||
				memcpy(skins[i].inverseBindMatrices.data(), &buffer.data[accessor.byteOffset + bufferview.byteOffset], accessor.count * sizeof(glm::mat4));
 | 
			
		||||
 | 
			
		||||
				//create a host visible shader buffer to store inverse bind matrices for this skin
 | 
			
		||||
				VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_STORAGE_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
 | 
			
		||||
					&skins[i].ssbo,
 | 
			
		||||
					sizeof(glm::mat4) * skins[i].inverseBindMatrices.size(),
 | 
			
		||||
					skins[i].inverseBindMatrices.data()));
 | 
			
		||||
				VK_CHECK_RESULT(skins[i].ssbo.map());
 | 
			
		||||
			}
 | 
			
		||||
		}
 | 
			
		||||
		
 | 
			
		||||
		
 | 
			
		||||
	}
 | 
			
		||||
	/*
 | 
			
		||||
		vertex skinning functions
 | 
			
		||||
	*/
 | 
			
		||||
	glm::mat4 VulkanglTFModel::getNodeMatrix(VulkanglTFModel::Node* node)
 | 
			
		||||
	{
 | 
			
		||||
		glm::mat4 nodeMatrix = node->getLocalMatrix();
 | 
			
		||||
		VulkanglTFModel::Node* currentParent = node->parent;
 | 
			
		||||
		while (currentParent)
 | 
			
		||||
		{
 | 
			
		||||
			nodeMatrix = currentParent->getLocalMatrix() * nodeMatrix;
 | 
			
		||||
			currentParent = currentParent->parent;
 | 
			
		||||
		}
 | 
			
		||||
		return nodeMatrix;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	void VulkanglTFModel::updateJoints(VulkanglTFModel::Node* node)
 | 
			
		||||
	{
 | 
			
		||||
		if (node->skin > -1)
 | 
			
		||||
		{
 | 
			
		||||
			glm::mat4 inversTransform = glm::inverse(getNodeMatrix(node));
 | 
			
		||||
			Skin skin = skins[node->skin];
 | 
			
		||||
			size_t numJoints = (uint32_t)skin.joints.size();
 | 
			
		||||
			std::vector<glm::mat4> jointMatrices(numJoints);
 | 
			
		||||
			for (size_t i = 0; i < numJoints; i++)
 | 
			
		||||
			{
 | 
			
		||||
				jointMatrices[i] = getNodeMatrix(skin.joints[i]) * skin.inverseBindMatrices[i];
 | 
			
		||||
				jointMatrices[i] = inversTransform * jointMatrices[i];
 | 
			
		||||
			}
 | 
			
		||||
			skin.ssbo.copyTo(jointMatrices.data(), jointMatrices.size() * sizeof(glm::mat4));
 | 
			
		||||
		}
 | 
			
		||||
		for (auto& child : node->children)
 | 
			
		||||
		{
 | 
			
		||||
			updateJoints(child);
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	void VulkanglTFModel::updateAnimation(float deltaTime)
 | 
			
		||||
	{
 | 
			
		||||
		if (activeAnimation > static_cast<uint32_t>(animations.size())-1)
 | 
			
		||||
		{
 | 
			
		||||
			std::cout << "no animation with index" << activeAnimation << std::endl;
 | 
			
		||||
			return;
 | 
			
		||||
		}
 | 
			
		||||
		Animation& animation = animations[activeAnimation];
 | 
			
		||||
		animation.currentTime += deltaTime;
 | 
			
		||||
		if (animation.currentTime > animation.end)
 | 
			
		||||
		{
 | 
			
		||||
			animation.currentTime -= animation.end;
 | 
			
		||||
		}
 | 
			
		||||
		for (auto& channel : animation.channels)
 | 
			
		||||
		{
 | 
			
		||||
			
 | 
			
		||||
			AnimationSampler& sampler = animation.samplers[channel.samplerIndex];
 | 
			
		||||
			for (size_t i = 0; i < sampler.inputs.size() - 1; i++)
 | 
			
		||||
			{
 | 
			
		||||
				if (sampler.interpolation != "LINEAR")
 | 
			
		||||
				{
 | 
			
		||||
					std::cout << "sample only supports linear interpolaton" << std::endl;
 | 
			
		||||
					continue;
 | 
			
		||||
				}
 | 
			
		||||
				if ((animation.currentTime >= sampler.inputs[i]) && (animation.currentTime <= sampler.inputs[i + 1]))
 | 
			
		||||
				{
 | 
			
		||||
					float a = (animation.currentTime - sampler.inputs[i]) / (sampler.inputs[i + 1] - sampler.inputs[i]);
 | 
			
		||||
					if (channel.path == "translation")
 | 
			
		||||
					{
 | 
			
		||||
						channel.node->translation = glm::mix(sampler.outputsVec4[i], sampler.outputsVec4[i + 1], a);
 | 
			
		||||
					}
 | 
			
		||||
					if (channel.path == "rotation")
 | 
			
		||||
					{
 | 
			
		||||
						//quaternion
 | 
			
		||||
						glm::quat q1;
 | 
			
		||||
						q1.x = sampler.outputsVec4[i].x;
 | 
			
		||||
						q1.y = sampler.outputsVec4[i].y;
 | 
			
		||||
						q1.z = sampler.outputsVec4[i].z;
 | 
			
		||||
						q1.w = sampler.outputsVec4[i].w;
 | 
			
		||||
 | 
			
		||||
						glm::quat q2;
 | 
			
		||||
						q2.x = sampler.outputsVec4[i].x;
 | 
			
		||||
						q2.y = sampler.outputsVec4[i].y;
 | 
			
		||||
						q2.z = sampler.outputsVec4[i].z;
 | 
			
		||||
						q2.w = sampler.outputsVec4[i].w;
 | 
			
		||||
 | 
			
		||||
						channel.node->rotation = glm::normalize(glm::slerp(q1, q2, a));
 | 
			
		||||
 | 
			
		||||
					}
 | 
			
		||||
					if (channel.path == "scale")
 | 
			
		||||
					{
 | 
			
		||||
						channel.node->scale = glm::mix(sampler.outputsVec4[i], sampler.outputsVec4[i + 1], a);
 | 
			
		||||
					}
 | 
			
		||||
				}
 | 
			
		||||
			}
 | 
			
		||||
		}
 | 
			
		||||
		for (auto& node : nodes)
 | 
			
		||||
		{
 | 
			
		||||
			updateJoints(node);
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
	}
 | 
			
		||||
	/*
 | 
			
		||||
		glTF rendering functions
 | 
			
		||||
	*/
 | 
			
		||||
 | 
			
		||||
	// Draw a single node including child nodes (if present)
 | 
			
		||||
	void VulkanglTFModel::drawNode(VkCommandBuffer commandBuffer, VkPipelineLayout pipelineLayout, VulkanglTFModel::Node node)
 | 
			
		||||
	void drawNode(VkCommandBuffer commandBuffer, VkPipelineLayout pipelineLayout, VulkanglTFModel::Node* node)
 | 
			
		||||
	{
 | 
			
		||||
		if (node.mesh.primitives.size() > 0) {
 | 
			
		||||
		if (node->mesh.primitives.size() > 0) {
 | 
			
		||||
			// Pass the node's matrix via push constants
 | 
			
		||||
			// Traverse the node hierarchy to the top-most parent to get the final matrix of the current node
 | 
			
		||||
			glm::mat4 nodeMatrix = node.matrix;
 | 
			
		||||
			VulkanglTFModel::Node* currentParent = node.parent;
 | 
			
		||||
			glm::mat4 nodeMatrix = node->matrix;
 | 
			
		||||
			VulkanglTFModel::Node* currentParent = node->parent;
 | 
			
		||||
			while (currentParent) {
 | 
			
		||||
				nodeMatrix = currentParent->matrix * nodeMatrix;
 | 
			
		||||
				currentParent = currentParent->parent;
 | 
			
		||||
			}
 | 
			
		||||
			// Pass the final matrix to the vertex shader using push constants
 | 
			
		||||
			vkCmdPushConstants(commandBuffer, pipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(glm::mat4), &nodeMatrix);
 | 
			
		||||
			
 | 
			
		||||
			//vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 1, 1, &skins[node.skin].descriptorSet, 0, nullptr);
 | 
			
		||||
			
 | 
			
		||||
			
 | 
			
		||||
 | 
			
		||||
			for (VulkanglTFModel::Primitive& primitive : node.mesh.primitives) {
 | 
			
		||||
				if (primitive.indexCount > 0) 
 | 
			
		||||
				{
 | 
			
		||||
			for (VulkanglTFModel::Primitive& primitive : node->mesh.primitives) {
 | 
			
		||||
				if (primitive.indexCount > 0) {
 | 
			
		||||
					// Get the texture index for this primitive
 | 
			
		||||
					VulkanglTFModel::Texture texture = textures[materials[primitive.materialIndex].baseColorTextureIndex];
 | 
			
		||||
					// Bind the descriptor for the current primitive's texture
 | 
			
		||||
					vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 2, 1, &images[texture.imageIndex].descriptorSet, 0, nullptr);
 | 
			
		||||
					vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 1, 1, &images[texture.imageIndex].descriptorSet, 0, nullptr);
 | 
			
		||||
					vkCmdDrawIndexed(commandBuffer, primitive.indexCount, 1, primitive.firstIndex, 0, 0);
 | 
			
		||||
				}
 | 
			
		||||
			}
 | 
			
		||||
		}
 | 
			
		||||
		for (auto& child : node.children) {
 | 
			
		||||
			drawNode(commandBuffer, pipelineLayout, *child);
 | 
			
		||||
		for (auto& child : node->children) {
 | 
			
		||||
			drawNode(commandBuffer, pipelineLayout, child);
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Draw the glTF scene starting at the top-level-nodes
 | 
			
		||||
	void VulkanglTFModel::draw(VkCommandBuffer commandBuffer, VkPipelineLayout pipelineLayout)
 | 
			
		||||
	void draw(VkCommandBuffer commandBuffer, VkPipelineLayout pipelineLayout)
 | 
			
		||||
	{
 | 
			
		||||
		// All vertices and indices are stored in single buffers, so we only need to bind once
 | 
			
		||||
		VkDeviceSize offsets[1] = { 0 };
 | 
			
		||||
| 
						 | 
				
			
			@ -592,15 +372,43 @@ VulkanglTFModel::~VulkanglTFModel()
 | 
			
		|||
		vkCmdBindIndexBuffer(commandBuffer, indices.buffer, 0, VK_INDEX_TYPE_UINT32);
 | 
			
		||||
		// Render all nodes at top-level
 | 
			
		||||
		for (auto& node : nodes) {
 | 
			
		||||
			drawNode(commandBuffer, pipelineLayout, *node);
 | 
			
		||||
			drawNode(commandBuffer, pipelineLayout, node);
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
class VulkanExample : public VulkanExampleBase
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
	bool wireframe = false;
 | 
			
		||||
 | 
			
		||||
	VulkanglTFModel glTFModel;
 | 
			
		||||
 | 
			
		||||
VulkanExample::VulkanExample():
 | 
			
		||||
	VulkanExampleBase(ENABLE_VALIDATION)
 | 
			
		||||
	struct ShaderData {
 | 
			
		||||
		vks::Buffer buffer;
 | 
			
		||||
		struct Values {
 | 
			
		||||
			glm::mat4 projection;
 | 
			
		||||
			glm::mat4 model;
 | 
			
		||||
			glm::vec4 lightPos = glm::vec4(5.0f, 5.0f, -5.0f, 1.0f);
 | 
			
		||||
			glm::vec4 viewPos;
 | 
			
		||||
		} values;
 | 
			
		||||
	} shaderData;
 | 
			
		||||
 | 
			
		||||
	struct Pipelines {
 | 
			
		||||
		VkPipeline solid;
 | 
			
		||||
		VkPipeline wireframe = VK_NULL_HANDLE;
 | 
			
		||||
	} pipelines;
 | 
			
		||||
 | 
			
		||||
	VkPipelineLayout pipelineLayout;
 | 
			
		||||
	VkDescriptorSet descriptorSet;
 | 
			
		||||
 | 
			
		||||
	struct DescriptorSetLayouts {
 | 
			
		||||
		VkDescriptorSetLayout matrices;
 | 
			
		||||
		VkDescriptorSetLayout textures;
 | 
			
		||||
	} descriptorSetLayouts;
 | 
			
		||||
 | 
			
		||||
	VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
 | 
			
		||||
	{
 | 
			
		||||
		title = "homework1";
 | 
			
		||||
		camera.type = Camera::CameraType::lookat;
 | 
			
		||||
| 
						 | 
				
			
			@ -610,7 +418,7 @@ VulkanExample::VulkanExample():
 | 
			
		|||
		camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
VulkanExample::~VulkanExample()
 | 
			
		||||
	~VulkanExample()
 | 
			
		||||
	{
 | 
			
		||||
		// Clean up used Vulkan resources
 | 
			
		||||
		// Note : Inherited destructor cleans up resources stored in base class
 | 
			
		||||
| 
						 | 
				
			
			@ -622,26 +430,24 @@ VulkanExample::~VulkanExample()
 | 
			
		|||
		vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
 | 
			
		||||
		vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.matrices, nullptr);
 | 
			
		||||
		vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.textures, nullptr);
 | 
			
		||||
		vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.jointMatrices, nullptr);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
		shaderData.buffer.destroy();
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
void VulkanExample::getEnabledFeatures()
 | 
			
		||||
{
 | 
			
		||||
	// Fill mode non solid is required for wireframe display
 | 
			
		||||
	if (deviceFeatures.fillModeNonSolid) {
 | 
			
		||||
		enabledFeatures.fillModeNonSolid = VK_TRUE;
 | 
			
		||||
	};
 | 
			
		||||
}
 | 
			
		||||
	virtual void getEnabledFeatures()
 | 
			
		||||
	{
 | 
			
		||||
		// Fill mode non solid is required for wireframe display
 | 
			
		||||
		if (deviceFeatures.fillModeNonSolid) {
 | 
			
		||||
			enabledFeatures.fillModeNonSolid = VK_TRUE;
 | 
			
		||||
		};
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	void VulkanExample::buildCommandBuffers()
 | 
			
		||||
	void buildCommandBuffers()
 | 
			
		||||
	{
 | 
			
		||||
		VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
 | 
			
		||||
 | 
			
		||||
		VkClearValue clearValues[2];
 | 
			
		||||
		
 | 
			
		||||
		clearValues[0].color = defaultClearColor;
 | 
			
		||||
		clearValues[0].color = { { 0.25f, 0.25f, 0.25f, 1.0f } };;
 | 
			
		||||
		clearValues[1].depthStencil = { 1.0f, 0 };
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -674,7 +480,7 @@ void VulkanExample::getEnabledFeatures()
 | 
			
		|||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	void VulkanExample::loadglTFFile(std::string filename)
 | 
			
		||||
	void loadglTFFile(std::string filename)
 | 
			
		||||
	{
 | 
			
		||||
		tinygltf::Model glTFInput;
 | 
			
		||||
		tinygltf::TinyGLTF gltfContext;
 | 
			
		||||
| 
						 | 
				
			
			@ -696,23 +502,14 @@ void VulkanExample::getEnabledFeatures()
 | 
			
		|||
		std::vector<uint32_t> indexBuffer;
 | 
			
		||||
		std::vector<VulkanglTFModel::Vertex> vertexBuffer;
 | 
			
		||||
 | 
			
		||||
		if (fileLoaded) 
 | 
			
		||||
		{
 | 
			
		||||
		if (fileLoaded) {
 | 
			
		||||
			glTFModel.loadImages(glTFInput);
 | 
			
		||||
			glTFModel.loadMaterials(glTFInput);
 | 
			
		||||
			glTFModel.loadTextures(glTFInput);
 | 
			
		||||
			glTFModel.loadSkins(glTFInput);
 | 
			
		||||
			const tinygltf::Scene& scene = glTFInput.scenes[0];
 | 
			
		||||
			for (size_t i = 0; i < scene.nodes.size(); i++) {
 | 
			
		||||
				const tinygltf::Node node = glTFInput.nodes[scene.nodes[i]];
 | 
			
		||||
				glTFModel.loadNode(node, glTFInput, nullptr,scene.nodes[i], indexBuffer, vertexBuffer);
 | 
			
		||||
			}
 | 
			
		||||
			
 | 
			
		||||
			glTFModel.loadAnimations(glTFInput);
 | 
			
		||||
			// update joint in nodes
 | 
			
		||||
			for (auto node : glTFModel.nodes)
 | 
			
		||||
			{
 | 
			
		||||
				glTFModel.updateJoints(node);
 | 
			
		||||
				glTFModel.loadNode(node, glTFInput, nullptr, indexBuffer, vertexBuffer);
 | 
			
		||||
			}
 | 
			
		||||
		}
 | 
			
		||||
		else {
 | 
			
		||||
| 
						 | 
				
			
			@ -777,7 +574,6 @@ void VulkanExample::getEnabledFeatures()
 | 
			
		|||
			©Region);
 | 
			
		||||
 | 
			
		||||
		copyRegion.size = indexBufferSize;
 | 
			
		||||
 | 
			
		||||
		vkCmdCopyBuffer(
 | 
			
		||||
			copyCmd,
 | 
			
		||||
			indexStaging.buffer,
 | 
			
		||||
| 
						 | 
				
			
			@ -794,12 +590,12 @@ void VulkanExample::getEnabledFeatures()
 | 
			
		|||
		vkFreeMemory(device, indexStaging.memory, nullptr);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	void VulkanExample::loadAssets()
 | 
			
		||||
	void loadAssets()
 | 
			
		||||
	{
 | 
			
		||||
		loadglTFFile(getAssetPath() + "models/CesiumMan/glTF/CesiumMan.gltf");
 | 
			
		||||
		loadglTFFile(getAssetPath() + "buster_drone/busterDrone.gltf");
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	void VulkanExample::setupDescriptors()
 | 
			
		||||
	void setupDescriptors()
 | 
			
		||||
	{
 | 
			
		||||
		/*
 | 
			
		||||
			This sample uses separate descriptor sets (and layouts) for the matrices and materials (textures)
 | 
			
		||||
| 
						 | 
				
			
			@ -809,43 +605,24 @@ void VulkanExample::getEnabledFeatures()
 | 
			
		|||
			vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1),
 | 
			
		||||
			// One combined image sampler per model image/texture
 | 
			
		||||
			vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, static_cast<uint32_t>(glTFModel.images.size())),
 | 
			
		||||
			//initialize descriptor pool size for skin
 | 
			
		||||
			vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,static_cast<uint32_t>(glTFModel.skins.size())),
 | 
			
		||||
		};
 | 
			
		||||
 | 
			
		||||
		// One set for matrices and one per model image/texture
 | 
			
		||||
		const uint32_t maxSetCount = static_cast<uint32_t>(glTFModel.images.size()) + static_cast<uint32_t>(glTFModel.skins.size())+1;
 | 
			
		||||
		const uint32_t maxSetCount = static_cast<uint32_t>(glTFModel.images.size()) + 1;
 | 
			
		||||
		VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, maxSetCount);
 | 
			
		||||
		VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
 | 
			
		||||
 | 
			
		||||
		// Descriptor set layouts
 | 
			
		||||
		VkDescriptorSetLayoutBinding    setLayoutBinding{};
 | 
			
		||||
		VkDescriptorSetLayoutCreateInfo descriptorSetLayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(&setLayoutBinding, 1);
 | 
			
		||||
 | 
			
		||||
		// Descriptor set layout for passing matrices
 | 
			
		||||
		setLayoutBinding = vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0);
 | 
			
		||||
		VkDescriptorSetLayoutBinding setLayoutBinding = vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0);
 | 
			
		||||
		VkDescriptorSetLayoutCreateInfo descriptorSetLayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(&setLayoutBinding, 1);
 | 
			
		||||
		VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayouts.matrices));
 | 
			
		||||
 | 
			
		||||
		// Descriptor set layout for passing material textures
 | 
			
		||||
		setLayoutBinding = vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 0);
 | 
			
		||||
		VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayouts.textures));
 | 
			
		||||
 | 
			
		||||
		//Descriptor set layout for passing skin joint matrices
 | 
			
		||||
		setLayoutBinding = vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0);
 | 
			
		||||
		VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayouts.jointMatrices));
 | 
			
		||||
 | 
			
		||||
		// Pipeline layout using three descriptor sets (set 0 = matrices, set 1 = joint matrices, set 3 = material)
 | 
			
		||||
		std::array<VkDescriptorSetLayout, 3> setLayouts = 
 | 
			
		||||
		{ 
 | 
			
		||||
			descriptorSetLayouts.matrices,
 | 
			
		||||
			descriptorSetLayouts.jointMatrices,
 | 
			
		||||
			descriptorSetLayouts.textures 
 | 
			
		||||
		};
 | 
			
		||||
		// Pipeline layout using both descriptor sets (set 0 = matrices, set 1 = material)
 | 
			
		||||
		std::array<VkDescriptorSetLayout, 2> setLayouts = { descriptorSetLayouts.matrices, descriptorSetLayouts.textures };
 | 
			
		||||
		VkPipelineLayoutCreateInfo pipelineLayoutCI= vks::initializers::pipelineLayoutCreateInfo(setLayouts.data(), static_cast<uint32_t>(setLayouts.size()));
 | 
			
		||||
 | 
			
		||||
		// We will use push constants to push the local matrices of a primitive to the vertex shader
 | 
			
		||||
		VkPushConstantRange pushConstantRange = vks::initializers::pushConstantRange(VK_SHADER_STAGE_VERTEX_BIT, sizeof(glm::mat4), 0);
 | 
			
		||||
 | 
			
		||||
		// Push constant ranges are part of the pipeline layout
 | 
			
		||||
		pipelineLayoutCI.pushConstantRangeCount = 1;
 | 
			
		||||
		pipelineLayoutCI.pPushConstantRanges = &pushConstantRange;
 | 
			
		||||
| 
						 | 
				
			
			@ -856,16 +633,6 @@ void VulkanExample::getEnabledFeatures()
 | 
			
		|||
		VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
 | 
			
		||||
		VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &shaderData.buffer.descriptor);
 | 
			
		||||
		vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr);
 | 
			
		||||
 | 
			
		||||
		//Descriptor sets for skin joint matrices
 | 
			
		||||
		for (auto& skin : glTFModel.skins)
 | 
			
		||||
		{
 | 
			
		||||
			const VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.jointMatrices, 1);
 | 
			
		||||
			VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &skin.descriptorSet));
 | 
			
		||||
			VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(skin.descriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 0, &skin.ssbo.descriptor);
 | 
			
		||||
			vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr);
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		// Descriptor sets for materials
 | 
			
		||||
		for (auto& image : glTFModel.images) {
 | 
			
		||||
			const VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.textures, 1);
 | 
			
		||||
| 
						 | 
				
			
			@ -873,11 +640,9 @@ void VulkanExample::getEnabledFeatures()
 | 
			
		|||
			VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(image.descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &image.texture.descriptor);
 | 
			
		||||
			vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr);
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	void VulkanExample::preparePipelines()
 | 
			
		||||
	void preparePipelines()
 | 
			
		||||
	{
 | 
			
		||||
		VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
 | 
			
		||||
		VkPipelineRasterizationStateCreateInfo rasterizationStateCI = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
 | 
			
		||||
| 
						 | 
				
			
			@ -897,9 +662,6 @@ void VulkanExample::getEnabledFeatures()
 | 
			
		|||
			vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, normal)),// Location 1: Normal
 | 
			
		||||
			vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, uv)),	// Location 2: Texture coordinates
 | 
			
		||||
			vks::initializers::vertexInputAttributeDescription(0, 3, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, color)),	// Location 3: Color
 | 
			
		||||
			vks::initializers::vertexInputAttributeDescription(0, 4, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex,jointIndices)), // Location 4 : jointIndices
 | 
			
		||||
			vks::initializers::vertexInputAttributeDescription(0, 5, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex,jointWeights)), //Location 5 : jointWeights
 | 
			
		||||
 | 
			
		||||
		};
 | 
			
		||||
		VkPipelineVertexInputStateCreateInfo vertexInputStateCI = vks::initializers::pipelineVertexInputStateCreateInfo();
 | 
			
		||||
		vertexInputStateCI.vertexBindingDescriptionCount = static_cast<uint32_t>(vertexInputBindings.size());
 | 
			
		||||
| 
						 | 
				
			
			@ -936,7 +698,7 @@ void VulkanExample::getEnabledFeatures()
 | 
			
		|||
	}
 | 
			
		||||
 | 
			
		||||
	// Prepare and initialize uniform buffer containing shader uniforms
 | 
			
		||||
	void VulkanExample::prepareUniformBuffers()
 | 
			
		||||
	void prepareUniformBuffers()
 | 
			
		||||
	{
 | 
			
		||||
		// Vertex shader uniform buffer block
 | 
			
		||||
		VK_CHECK_RESULT(vulkanDevice->createBuffer(
 | 
			
		||||
| 
						 | 
				
			
			@ -951,15 +713,15 @@ void VulkanExample::getEnabledFeatures()
 | 
			
		|||
		updateUniformBuffers();
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	void VulkanExample::updateUniformBuffers()
 | 
			
		||||
	void updateUniformBuffers()
 | 
			
		||||
	{
 | 
			
		||||
		shaderData.values.projection = camera.matrices.perspective;
 | 
			
		||||
		shaderData.values.model = camera.matrices.view;
 | 
			
		||||
		
 | 
			
		||||
		shaderData.values.viewPos = camera.viewPos;
 | 
			
		||||
		memcpy(shaderData.buffer.mapped, &shaderData.values, sizeof(shaderData.values));
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	void VulkanExample::prepare()
 | 
			
		||||
	void prepare()
 | 
			
		||||
	{
 | 
			
		||||
		VulkanExampleBase::prepare();
 | 
			
		||||
		loadAssets();
 | 
			
		||||
| 
						 | 
				
			
			@ -970,24 +732,20 @@ void VulkanExample::getEnabledFeatures()
 | 
			
		|||
		prepared = true;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	void VulkanExample::render()
 | 
			
		||||
	virtual void render()
 | 
			
		||||
	{
 | 
			
		||||
		renderFrame();
 | 
			
		||||
		if (camera.updated) {
 | 
			
		||||
			updateUniformBuffers();
 | 
			
		||||
		}
 | 
			
		||||
		if (!paused)
 | 
			
		||||
		{
 | 
			
		||||
			glTFModel.updateAnimation(frameTimer);
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	void VulkanExample::viewChanged()
 | 
			
		||||
	virtual void viewChanged()
 | 
			
		||||
	{
 | 
			
		||||
		updateUniformBuffers();
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	void VulkanExample::OnUpdateUIOverlay(vks::UIOverlay *overlay)
 | 
			
		||||
	virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
 | 
			
		||||
	{
 | 
			
		||||
		if (overlay->header("Settings")) {
 | 
			
		||||
			if (overlay->checkBox("Wireframe", &wireframe)) {
 | 
			
		||||
| 
						 | 
				
			
			@ -995,6 +753,6 @@ void VulkanExample::getEnabledFeatures()
 | 
			
		|||
			}
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
VULKAN_EXAMPLE_MAIN()
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1,226 +0,0 @@
 | 
			
		|||
 | 
			
		||||
#include <assert.h>
 | 
			
		||||
#include <stdio.h>
 | 
			
		||||
#include <stdlib.h>
 | 
			
		||||
#include <string.h>
 | 
			
		||||
#include <vector>
 | 
			
		||||
 | 
			
		||||
#define GLM_FORCE_RADIANS
 | 
			
		||||
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
 | 
			
		||||
#include <glm/glm.hpp>
 | 
			
		||||
#include <glm/gtc/matrix_transform.hpp>
 | 
			
		||||
#include <glm/gtc/type_ptr.hpp>
 | 
			
		||||
 | 
			
		||||
#define TINYGLTF_IMPLEMENTATION
 | 
			
		||||
#define STB_IMAGE_IMPLEMENTATION
 | 
			
		||||
#define TINYGLTF_NO_STB_IMAGE_WRITE
 | 
			
		||||
 | 
			
		||||
#ifdef VK_USE_PLATFORM_ANDROID_KHR
 | 
			
		||||
	#define TINYGLTF_ANDROID_LOAD_FROM_ASSETS
 | 
			
		||||
#endif
 | 
			
		||||
#include "tiny_gltf.h"
 | 
			
		||||
 | 
			
		||||
#include "vulkanexamplebase.h"
 | 
			
		||||
 | 
			
		||||
#define ENABLE_VALIDATION false
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
// Contains everything required to render a glTF model in Vulkan
 | 
			
		||||
// This class is heavily simplified (compared to glTF's feature set) but retains the basic glTF structure
 | 
			
		||||
class VulkanglTFModel
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
	// The class requires some Vulkan objects so it can create it's own resources
 | 
			
		||||
	vks::VulkanDevice* vulkanDevice;
 | 
			
		||||
	VkQueue copyQueue;
 | 
			
		||||
 | 
			
		||||
	// The vertex layout for the samples' model
 | 
			
		||||
	struct Vertex {
 | 
			
		||||
		glm::vec3 pos;
 | 
			
		||||
		glm::vec3 normal;
 | 
			
		||||
		glm::vec2 uv;
 | 
			
		||||
		glm::vec3 color;
 | 
			
		||||
		glm::vec3 jointIndices;
 | 
			
		||||
		glm::vec3 jointWeights;
 | 
			
		||||
	};
 | 
			
		||||
 | 
			
		||||
	// Single vertex buffer for all primitives
 | 
			
		||||
	struct Vertices {
 | 
			
		||||
		VkBuffer buffer;
 | 
			
		||||
		VkDeviceMemory memory;
 | 
			
		||||
	} vertices;
 | 
			
		||||
 | 
			
		||||
	// Single index buffer for all primitives
 | 
			
		||||
	struct Indices {
 | 
			
		||||
		int count;
 | 
			
		||||
		VkBuffer buffer;
 | 
			
		||||
		VkDeviceMemory memory;
 | 
			
		||||
	} indices;
 | 
			
		||||
 | 
			
		||||
	// The following structures roughly represent the glTF scene structure
 | 
			
		||||
	// To keep things simple, they only contain those properties that are required for this sample
 | 
			
		||||
	struct Node;
 | 
			
		||||
 | 
			
		||||
	// A primitive contains the data for a single draw call
 | 
			
		||||
	struct Primitive {
 | 
			
		||||
		uint32_t firstIndex;
 | 
			
		||||
		uint32_t indexCount;
 | 
			
		||||
		int32_t materialIndex;
 | 
			
		||||
	};
 | 
			
		||||
 | 
			
		||||
	// Contains the node's (optional) geometry and can be made up of an arbitrary number of primitives
 | 
			
		||||
	struct Mesh {
 | 
			
		||||
		std::vector<Primitive> primitives;
 | 
			
		||||
	};
 | 
			
		||||
 | 
			
		||||
	// A node represents an object in the glTF scene graph
 | 
			
		||||
	struct Node {
 | 
			
		||||
		Node* parent;
 | 
			
		||||
		uint32_t index;
 | 
			
		||||
		std::vector<Node*>  children;
 | 
			
		||||
		Mesh mesh;
 | 
			
		||||
		glm::vec3 translation{};
 | 
			
		||||
		glm::vec3 scale{ 1.0f };
 | 
			
		||||
		glm::quat rotation{};
 | 
			
		||||
		int32_t             skin = -1;
 | 
			
		||||
		glm::mat4 getLocalMatrix();
 | 
			
		||||
		glm::mat4 matrix;
 | 
			
		||||
 | 
			
		||||
	};
 | 
			
		||||
 | 
			
		||||
	// A glTF material stores information in e.g. the texture that is attached to it and colors
 | 
			
		||||
	struct Material {
 | 
			
		||||
		glm::vec4 baseColorFactor = glm::vec4(1.0f);
 | 
			
		||||
		uint32_t baseColorTextureIndex;
 | 
			
		||||
	};
 | 
			
		||||
 | 
			
		||||
	// Contains the texture for a single glTF image
 | 
			
		||||
	// Images may be reused by texture objects and are as such separated
 | 
			
		||||
	struct Image {
 | 
			
		||||
		vks::Texture2D texture;
 | 
			
		||||
		// We also store (and create) a descriptor set that's used to access this texture from the fragment shader
 | 
			
		||||
		VkDescriptorSet descriptorSet;
 | 
			
		||||
	};
 | 
			
		||||
 | 
			
		||||
	// A glTF texture stores a reference to the image and a sampler
 | 
			
		||||
	// In this sample, we are only interested in the image
 | 
			
		||||
	struct Texture {
 | 
			
		||||
		int32_t imageIndex;
 | 
			
		||||
	};
 | 
			
		||||
 | 
			
		||||
	// structure of skin
 | 
			
		||||
	struct Skin {
 | 
			
		||||
		std::string name;
 | 
			
		||||
		Node* skeletonRoot = nullptr;
 | 
			
		||||
		std::vector<glm::mat4> inverseBindMatrices;
 | 
			
		||||
		std::vector<Node*> joints;
 | 
			
		||||
		vks::Buffer ssbo;
 | 
			
		||||
		VkDescriptorSet descriptorSet;
 | 
			
		||||
	};
 | 
			
		||||
 | 
			
		||||
	struct AnimationSampler
 | 
			
		||||
	{
 | 
			
		||||
		std::string interpolation;
 | 
			
		||||
		std::vector<float> inputs;
 | 
			
		||||
		std::vector<glm::vec4> outputsVec4;
 | 
			
		||||
 | 
			
		||||
	};
 | 
			
		||||
 | 
			
		||||
	struct AnimationChannel
 | 
			
		||||
	{
 | 
			
		||||
		std::string path;
 | 
			
		||||
		Node* node;
 | 
			
		||||
		uint32_t samplerIndex;
 | 
			
		||||
 | 
			
		||||
	};
 | 
			
		||||
 | 
			
		||||
	struct Animation
 | 
			
		||||
	{
 | 
			
		||||
		std::string name;
 | 
			
		||||
		std::vector<AnimationSampler> samplers;
 | 
			
		||||
		std::vector<AnimationChannel> channels;
 | 
			
		||||
 | 
			
		||||
		float start = std::numeric_limits<float>::max();
 | 
			
		||||
		float end = std::numeric_limits<float>::min();
 | 
			
		||||
		float currentTime = 0.0f;
 | 
			
		||||
	};
 | 
			
		||||
 | 
			
		||||
	/*
 | 
			
		||||
		Model data
 | 
			
		||||
	*/
 | 
			
		||||
	std::vector<Image> images;
 | 
			
		||||
	std::vector<Texture> textures;
 | 
			
		||||
	std::vector<Material> materials;
 | 
			
		||||
	std::vector<Node*> nodes;
 | 
			
		||||
	std::vector<Skin> skins;
 | 
			
		||||
	std::vector<Animation> animations;
 | 
			
		||||
 | 
			
		||||
	uint32_t activeAnimation = 0;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
	 //VulkanglTFModel();
 | 
			
		||||
	~VulkanglTFModel();
 | 
			
		||||
	void      loadImages(tinygltf::Model& input);
 | 
			
		||||
	void      loadTextures(tinygltf::Model& input);
 | 
			
		||||
	void      loadMaterials(tinygltf::Model& input);
 | 
			
		||||
	Node* findNode(Node* parent, uint32_t index);
 | 
			
		||||
	Node* nodeFromIndex(uint32_t index);
 | 
			
		||||
	void      loadSkins(tinygltf::Model& input);
 | 
			
		||||
	void      loadAnimations(tinygltf::Model& input);
 | 
			
		||||
	void      loadNode(const tinygltf::Node& inputNode, const tinygltf::Model& input, VulkanglTFModel::Node* parent, uint32_t nodeIndex, std::vector<uint32_t>& indexBuffer, std::vector<VulkanglTFModel::Vertex>& vertexBuffer);
 | 
			
		||||
	glm::mat4 getNodeMatrix(VulkanglTFModel::Node* node);
 | 
			
		||||
	void      updateJoints(VulkanglTFModel::Node* node);
 | 
			
		||||
	void      updateAnimation(float deltaTime);
 | 
			
		||||
	void drawNode(VkCommandBuffer commandBuffer, VkPipelineLayout pipelineLayout, VulkanglTFModel::Node node);
 | 
			
		||||
	void      draw(VkCommandBuffer commandBuffer, VkPipelineLayout pipelineLayout);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
class VulkanExample : public VulkanExampleBase
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
	bool wireframe = false;
 | 
			
		||||
 | 
			
		||||
	VulkanglTFModel glTFModel;
 | 
			
		||||
 | 
			
		||||
	struct ShaderData {
 | 
			
		||||
		vks::Buffer buffer;
 | 
			
		||||
		struct Values {
 | 
			
		||||
			glm::mat4 projection;
 | 
			
		||||
			glm::mat4 model;
 | 
			
		||||
			glm::vec4 lightPos = glm::vec4(5.0f, 5.0f, 5.0f, 1.0f);
 | 
			
		||||
			glm::vec4 viewPos;
 | 
			
		||||
		} values;
 | 
			
		||||
	} shaderData;
 | 
			
		||||
 | 
			
		||||
	struct Pipelines {
 | 
			
		||||
		VkPipeline solid;
 | 
			
		||||
		VkPipeline wireframe = VK_NULL_HANDLE;
 | 
			
		||||
	} pipelines;
 | 
			
		||||
 | 
			
		||||
	VkPipelineLayout pipelineLayout;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
	struct DescriptorSetLayouts {
 | 
			
		||||
		VkDescriptorSetLayout matrices;
 | 
			
		||||
		VkDescriptorSetLayout textures;
 | 
			
		||||
		VkDescriptorSetLayout jointMatrices;
 | 
			
		||||
	} descriptorSetLayouts;
 | 
			
		||||
 | 
			
		||||
	VkDescriptorSet descriptorSet;
 | 
			
		||||
 | 
			
		||||
	VulkanExample();
 | 
			
		||||
	~VulkanExample();
 | 
			
		||||
	void         loadglTFFile(std::string filename);
 | 
			
		||||
	virtual void getEnabledFeatures();
 | 
			
		||||
	void         buildCommandBuffers();
 | 
			
		||||
	void         loadAssets();
 | 
			
		||||
	void         setupDescriptors();
 | 
			
		||||
	void         preparePipelines();
 | 
			
		||||
	void         prepareUniformBuffers();
 | 
			
		||||
	void         updateUniformBuffers();
 | 
			
		||||
	void         prepare();
 | 
			
		||||
	virtual void render();
 | 
			
		||||
	virtual void viewChanged();
 | 
			
		||||
	virtual void OnUpdateUIOverlay(vks::UIOverlay* overlay);
 | 
			
		||||
};
 | 
			
		||||
		Loading…
	
		Reference in New Issue