pull/2/head
ink-soul 2023-05-17 14:53:31 +08:00
parent 2aa0ab76d1
commit f8212fca5e
2 changed files with 238 additions and 706 deletions

View File

@ -17,15 +17,106 @@
* If you are looking for a complete glTF implementation, check out https://github.com/SaschaWillems/Vulkan-glTF-PBR/ * If you are looking for a complete glTF implementation, check out https://github.com/SaschaWillems/Vulkan-glTF-PBR/
*/ */
#define TINYGLTF_IMPLEMENTATION
#define STB_IMAGE_IMPLEMENTATION
#define TINYGLTF_NO_STB_IMAGE_WRITE
#ifdef VK_USE_PLATFORM_ANDROID_KHR
#define TINYGLTF_ANDROID_LOAD_FROM_ASSETS
#endif
#include "tiny_gltf.h"
#include "homework1.h" #include "vulkanexamplebase.h"
glm::mat4 VulkanglTFModel::Node::getLocalMatrix() #define ENABLE_VALIDATION false
// Contains everything required to render a glTF model in Vulkan
// This class is heavily simplified (compared to glTF's feature set) but retains the basic glTF structure
class VulkanglTFModel
{ {
return glm::translate(glm::mat4(1.0f), translation) * glm::mat4(rotation) * glm::scale(glm::mat4(1.0f), scale) * matrix; public:
} // The class requires some Vulkan objects so it can create it's own resources
vks::VulkanDevice* vulkanDevice;
VkQueue copyQueue;
VulkanglTFModel::~VulkanglTFModel() // The vertex layout for the samples' model
struct Vertex {
glm::vec3 pos;
glm::vec3 normal;
glm::vec2 uv;
glm::vec3 color;
};
// Single vertex buffer for all primitives
struct {
VkBuffer buffer;
VkDeviceMemory memory;
} vertices;
// Single index buffer for all primitives
struct {
int count;
VkBuffer buffer;
VkDeviceMemory memory;
} indices;
// The following structures roughly represent the glTF scene structure
// To keep things simple, they only contain those properties that are required for this sample
struct Node;
// A primitive contains the data for a single draw call
struct Primitive {
uint32_t firstIndex;
uint32_t indexCount;
int32_t materialIndex;
};
// Contains the node's (optional) geometry and can be made up of an arbitrary number of primitives
struct Mesh {
std::vector<Primitive> primitives;
};
// A node represents an object in the glTF scene graph
struct Node {
Node* parent;
std::vector<Node*> children;
Mesh mesh;
glm::mat4 matrix;
~Node() {
for (auto& child : children) {
delete child;
}
}
};
// A glTF material stores information in e.g. the texture that is attached to it and colors
struct Material {
glm::vec4 baseColorFactor = glm::vec4(1.0f);
uint32_t baseColorTextureIndex;
};
// Contains the texture for a single glTF image
// Images may be reused by texture objects and are as such separated
struct Image {
vks::Texture2D texture;
// We also store (and create) a descriptor set that's used to access this texture from the fragment shader
VkDescriptorSet descriptorSet;
};
// A glTF texture stores a reference to the image and a sampler
// In this sample, we are only interested in the image
struct Texture {
int32_t imageIndex;
};
/*
Model data
*/
std::vector<Image> images;
std::vector<Texture> textures;
std::vector<Material> materials;
std::vector<Node*> nodes;
~VulkanglTFModel()
{ {
for (auto node : nodes) { for (auto node : nodes) {
delete node; delete node;
@ -41,10 +132,6 @@ VulkanglTFModel::~VulkanglTFModel()
vkDestroySampler(vulkanDevice->logicalDevice, image.texture.sampler, nullptr); vkDestroySampler(vulkanDevice->logicalDevice, image.texture.sampler, nullptr);
vkFreeMemory(vulkanDevice->logicalDevice, image.texture.deviceMemory, nullptr); vkFreeMemory(vulkanDevice->logicalDevice, image.texture.deviceMemory, nullptr);
} }
for (Skin skin : skins)
{
skin.ssbo.destroy();
}
} }
/* /*
@ -53,7 +140,7 @@ VulkanglTFModel::~VulkanglTFModel()
The following functions take a glTF input model loaded via tinyglTF and convert all required data into our own structure The following functions take a glTF input model loaded via tinyglTF and convert all required data into our own structure
*/ */
void VulkanglTFModel::loadImages(tinygltf::Model& input) void loadImages(tinygltf::Model& input)
{ {
// Images can be stored inside the glTF (which is the case for the sample model), so instead of directly // Images can be stored inside the glTF (which is the case for the sample model), so instead of directly
// loading them from disk, we fetch them from the glTF loader and upload the buffers // loading them from disk, we fetch them from the glTF loader and upload the buffers
@ -89,7 +176,7 @@ VulkanglTFModel::~VulkanglTFModel()
} }
} }
void VulkanglTFModel::loadTextures(tinygltf::Model& input) void loadTextures(tinygltf::Model& input)
{ {
textures.resize(input.textures.size()); textures.resize(input.textures.size());
for (size_t i = 0; i < input.textures.size(); i++) { for (size_t i = 0; i < input.textures.size(); i++) {
@ -97,7 +184,7 @@ VulkanglTFModel::~VulkanglTFModel()
} }
} }
void VulkanglTFModel::loadMaterials(tinygltf::Model& input) void loadMaterials(tinygltf::Model& input)
{ {
materials.resize(input.materials.size()); materials.resize(input.materials.size());
for (size_t i = 0; i < input.materials.size(); i++) { for (size_t i = 0; i < input.materials.size(); i++) {
@ -113,478 +200,171 @@ VulkanglTFModel::~VulkanglTFModel()
} }
} }
} }
//glTF nodes loading helper function
//rewrite node loader,simplify logic
//Search node from parent to children by index
VulkanglTFModel::Node* VulkanglTFModel::findNode(Node* parent, uint32_t index)
{
Node* nodeFound = nullptr;
if (parent->index == index)
{
return parent;
}
for (auto &child : parent->children)
{
nodeFound = findNode(child, index);
if (nodeFound)
{
break;
}
}
return nodeFound;
} //iterate vector of nodes to check weather nodes exist or not
VulkanglTFModel::Node* VulkanglTFModel::nodeFromIndex(uint32_t index)
{
Node* nodeFound = nullptr;
for (auto& node : nodes)
{
nodeFound = findNode(node, index);
if (nodeFound)
{
break;
}
}
return nodeFound;
}
//animation loader void loadNode(const tinygltf::Node& inputNode, const tinygltf::Model& input, VulkanglTFModel::Node* parent, std::vector<uint32_t>& indexBuffer, std::vector<VulkanglTFModel::Vertex>& vertexBuffer)
void VulkanglTFModel::loadAnimations(tinygltf::Model& input)
{
animations.resize(input.animations.size());
for (size_t i = 0; i < input.animations.size(); i++)
{
tinygltf::Animation glTFAnimation = input.animations[i];
animations[i].name = glTFAnimation.name;
animations[i].samplers.resize(glTFAnimation.samplers.size());
for (size_t j = 0; j < glTFAnimation.samplers.size(); j++)
{
tinygltf::AnimationSampler glTFSampler = glTFAnimation.samplers[j];
AnimationSampler& dstSampler = animations[i].samplers[j];
dstSampler.interpolation = glTFSampler.interpolation;
//sample keyframes to input
{
const tinygltf::Accessor& accessor = input.accessors[glTFSampler.input];
const tinygltf::BufferView& bufferView = input.bufferViews[accessor.bufferView];
const tinygltf::Buffer& buffer = input.buffers[bufferView.buffer];
//data pointer
const void* dataptr = &buffer.data[accessor.byteOffset + bufferView.byteOffset];
const float* buf = static_cast<const float*>(dataptr);
for (size_t index = 0; index < accessor.count; index++)
{
dstSampler.inputs.push_back(buf[index]);
}
//switch value for correct start and end time
for (auto input : animations[i].samplers[j].inputs)
{
if (input < animations[i].start)
{
animations[i].start = input;
};
if (input > animations[i].end)
{
animations[i].end = input;
}
}
}
//identify accessor type for keyframes to output translate/rotate/scale values
{
const tinygltf::Accessor& accessor = input.accessors[glTFSampler.input];
const tinygltf::BufferView& bufferView = input.bufferViews[accessor.bufferView];
const tinygltf::Buffer& buffer = input.buffers[bufferView.buffer];
//data pointer
const void* dataptr = &buffer.data[accessor.byteOffset + bufferView.byteOffset];
switch (accessor.type)
{
case TINYGLTF_TYPE_VEC3:
{
const glm::vec3* buf = static_cast<const glm::vec3*> (dataptr);
for (size_t index = 0; index < accessor.count; index++)
{
dstSampler.outputsVec4.push_back(glm::vec4(buf[index], 0.0f));
}
break;
}
case TINYGLTF_TYPE_VEC4:
{
const glm::vec4* buf = static_cast<const glm::vec4*>(dataptr);
for (size_t index = 0; index < accessor.count; index++)
{
dstSampler.outputsVec4.push_back(buf[index]);
}
break;
}
default:
{
std::cout << "unknown type in accessor" << std::endl;
}
break;
}
}
}
animations[i].channels.resize(glTFAnimation.channels.size());
for (size_t j = 0; j < glTFAnimation.channels.size(); j++)
{
tinygltf::AnimationChannel glTFChannel = glTFAnimation.channels[j];
AnimationChannel& dstChannel = animations[i].channels[j];
dstChannel.path = glTFChannel.target_path;
dstChannel.samplerIndex = glTFChannel.sampler;
dstChannel.node = nodeFromIndex(glTFChannel.target_node);
}
}
}
//node loader
void VulkanglTFModel::loadNode(const tinygltf::Node& inputNode, const tinygltf::Model& input, VulkanglTFModel::Node* parent, uint32_t nodeIndex, std::vector<uint32_t>& indexBuffer, std::vector<VulkanglTFModel::Vertex>& vertexBuffer)
{ {
VulkanglTFModel::Node* node = new VulkanglTFModel::Node{}; VulkanglTFModel::Node* node = new VulkanglTFModel::Node{};
node->parent = parent;
node->matrix = glm::mat4(1.0f); node->matrix = glm::mat4(1.0f);
node->index = nodeIndex; node->parent = parent;
node->skin = inputNode.skin;
//get distributions of node // Get the local node matrix
if (inputNode.translation.size() == 3) // It's either made up from translation, rotation, scale or a 4x4 matrix
{ if (inputNode.translation.size() == 3) {
node->translation = glm::make_vec3(inputNode.translation.data()); node->matrix = glm::translate(node->matrix, glm::vec3(glm::make_vec3(inputNode.translation.data())));
} }
if (inputNode.scale.size() == 3) if (inputNode.rotation.size() == 4) {
{
node->scale = glm::make_vec3(inputNode.scale.data());
}
if (inputNode.rotation.size() == 4)
{ //rotation is given by quaternion
glm::quat q = glm::make_quat(inputNode.rotation.data()); glm::quat q = glm::make_quat(inputNode.rotation.data());
node->rotation = glm::mat4(q); node->matrix *= glm::mat4(q);
} }
if (inputNode.matrix.size() == 16) if (inputNode.scale.size() == 3) {
{ node->matrix = glm::scale(node->matrix, glm::vec3(glm::make_vec3(inputNode.scale.data())));
}
if (inputNode.matrix.size() == 16) {
node->matrix = glm::make_mat4x4(inputNode.matrix.data()); node->matrix = glm::make_mat4x4(inputNode.matrix.data());
} };
//find children of nodes if exists // Load node's children
if (inputNode.children.size() > 0) if (inputNode.children.size() > 0) {
{ for (size_t i = 0; i < inputNode.children.size(); i++) {
for (size_t i = 0; i < inputNode.children.size(); i++) loadNode(input.nodes[inputNode.children[i]], input , node, indexBuffer, vertexBuffer);
{
VulkanglTFModel::loadNode(input.nodes[inputNode.children[i]], input, node, inputNode.children[i], indexBuffer, vertexBuffer);
} }
} }
//load meshes in nodes if exists
if (inputNode.mesh > -1) // If the node contains mesh data, we load vertices and indices from the buffers
{ // In glTF this is done via accessors and buffer views
if (inputNode.mesh > -1) {
const tinygltf::Mesh mesh = input.meshes[inputNode.mesh]; const tinygltf::Mesh mesh = input.meshes[inputNode.mesh];
for (size_t i = 0; i < mesh.primitives.size(); i++) // Iterate through all primitives of this node's mesh
{ for (size_t i = 0; i < mesh.primitives.size(); i++) {
const tinygltf::Primitive& glTFPrimmitive = mesh.primitives[i]; const tinygltf::Primitive& glTFPrimitive = mesh.primitives[i];
uint32_t firstIndex = static_cast<uint32_t>(indexBuffer.size()); uint32_t firstIndex = static_cast<uint32_t>(indexBuffer.size());
uint32_t vertexStart = static_cast<uint32_t>(vertexBuffer.size()); uint32_t vertexStart = static_cast<uint32_t>(vertexBuffer.size());
uint32_t indexCount = 0; uint32_t indexCount = 0;
const float* positionBuffer = nullptr; // Vertices
const float* normalsBuffer = nullptr;
const float* texcoordsBuffer = nullptr;
const float* jointWeightsBuffer = nullptr;
const uint16_t * jointIndicesBuffer = nullptr;
size_t vertexCount = 0;
bool hasSkin = false;
//get buffer by index in primmitive.attributes
{ {
if (glTFPrimmitive.attributes.find("POSITION") != glTFPrimmitive.attributes.end()) const float* positionBuffer = nullptr;
{ const float* normalsBuffer = nullptr;
const tinygltf::Accessor& accessor = input.accessors[glTFPrimmitive.attributes.find("POSITION")->second]; const float* texCoordsBuffer = nullptr;
const tinygltf::BufferView view = input.bufferViews[accessor.bufferView]; size_t vertexCount = 0;
positionBuffer = reinterpret_cast<const float*> (&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset]));
// Get buffer data for vertex positions
if (glTFPrimitive.attributes.find("POSITION") != glTFPrimitive.attributes.end()) {
const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.attributes.find("POSITION")->second];
const tinygltf::BufferView& view = input.bufferViews[accessor.bufferView];
positionBuffer = reinterpret_cast<const float*>(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset]));
vertexCount = accessor.count; vertexCount = accessor.count;
} }
if (glTFPrimmitive.attributes.find("NORMAL") != glTFPrimmitive.attributes.end()) // Get buffer data for vertex normals
{ if (glTFPrimitive.attributes.find("NORMAL") != glTFPrimitive.attributes.end()) {
const tinygltf::Accessor& accessor = input.accessors[glTFPrimmitive.attributes.find("NORMAL")->second]; const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.attributes.find("NORMAL")->second];
const tinygltf::BufferView &view = input.bufferViews[accessor.bufferView]; const tinygltf::BufferView& view = input.bufferViews[accessor.bufferView];
normalsBuffer = reinterpret_cast<const float*> (&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset])); normalsBuffer = reinterpret_cast<const float*>(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset]));
} }
if (glTFPrimmitive.attributes.find("TEXCOORD_0") != glTFPrimmitive.attributes.end()) // Get buffer data for vertex texture coordinates
{ // glTF supports multiple sets, we only load the first one
const tinygltf::Accessor& accessor = input.accessors[glTFPrimmitive.attributes.find("TEXCOORD_0")->second]; if (glTFPrimitive.attributes.find("TEXCOORD_0") != glTFPrimitive.attributes.end()) {
const tinygltf::BufferView &view = input.bufferViews[accessor.bufferView]; const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.attributes.find("TEXCOORD_0")->second];
texcoordsBuffer = reinterpret_cast<const float*> (&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset])); const tinygltf::BufferView& view = input.bufferViews[accessor.bufferView];
texCoordsBuffer = reinterpret_cast<const float*>(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset]));
} }
if (glTFPrimmitive.attributes.find("JOINTS_0") != glTFPrimmitive.attributes.end())
{
const tinygltf::Accessor& accessor = input.accessors[glTFPrimmitive.attributes.find("JOINTS_0")->second];
const tinygltf::BufferView &view = input.bufferViews[accessor.bufferView];
jointIndicesBuffer = reinterpret_cast<const uint16_t*> (&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset]));
} // Append data to model's vertex buffer
if (glTFPrimmitive.attributes.find("WEIGHTS_0") != glTFPrimmitive.attributes.end()) for (size_t v = 0; v < vertexCount; v++) {
{
const tinygltf::Accessor& accessor = input.accessors[glTFPrimmitive.attributes.find("WEIGHTS_0")->second];
const tinygltf::BufferView &view = input.bufferViews[accessor.bufferView];
jointWeightsBuffer = reinterpret_cast<const float*> (&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset]));
}
hasSkin = (jointIndicesBuffer && jointWeightsBuffer);
for (size_t v = 0; v < vertexCount; v++)
{
Vertex vert{}; Vertex vert{};
vert.pos = glm::vec4(glm::make_vec3(&positionBuffer[v * 3]), 1.0f); vert.pos = glm::vec4(glm::make_vec3(&positionBuffer[v * 3]), 1.0f);
vert.uv = texcoordsBuffer ? glm::make_vec2(&texcoordsBuffer[v*2]):glm::vec4(0.0f);
vert.normal = glm::normalize(glm::vec3(normalsBuffer ? glm::make_vec3(&normalsBuffer[v * 3]) : glm::vec3(0.0f))); vert.normal = glm::normalize(glm::vec3(normalsBuffer ? glm::make_vec3(&normalsBuffer[v * 3]) : glm::vec3(0.0f)));
vert.uv = texCoordsBuffer ? glm::make_vec2(&texCoordsBuffer[v * 2]) : glm::vec3(0.0f);
vert.color = glm::vec3(1.0f); vert.color = glm::vec3(1.0f);
vert.jointIndices = hasSkin ? glm::vec4(glm::make_vec4(&jointIndicesBuffer[v * 4])) : glm::vec4(0.0f);
vert.jointWeights = hasSkin ? glm::make_vec4(&jointWeightsBuffer[v * 4]) : glm::vec4(0.0f);
vertexBuffer.push_back(vert); vertexBuffer.push_back(vert);
} }
} }
// Indices
{ {
const tinygltf::Accessor& accessor = input.accessors[glTFPrimmitive.indices]; const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.indices];
const tinygltf::BufferView& bufferview = input.bufferViews[accessor.bufferView]; const tinygltf::BufferView& bufferView = input.bufferViews[accessor.bufferView];
const tinygltf::Buffer& buffer = input.buffers[bufferview.buffer]; const tinygltf::Buffer& buffer = input.buffers[bufferView.buffer];
indexCount += static_cast<uint32_t>(accessor.count); indexCount += static_cast<uint32_t>(accessor.count);
switch (accessor.componentType) // glTF supports different component types of indices
{ switch (accessor.componentType) {
case TINYGLTF_PARAMETER_TYPE_UNSIGNED_INT: { case TINYGLTF_PARAMETER_TYPE_UNSIGNED_INT: {
const uint32_t* buf = reinterpret_cast<const uint32_t*>(&buffer.data[accessor.byteOffset + bufferview.byteOffset]); const uint32_t* buf = reinterpret_cast<const uint32_t*>(&buffer.data[accessor.byteOffset + bufferView.byteOffset]);
for (size_t index = 0; index < accessor.count; index++) for (size_t index = 0; index < accessor.count; index++) {
{
indexBuffer.push_back(buf[index] + vertexStart); indexBuffer.push_back(buf[index] + vertexStart);
} }
break; break;
} }
case TINYGLTF_PARAMETER_TYPE_UNSIGNED_SHORT:{ case TINYGLTF_PARAMETER_TYPE_UNSIGNED_SHORT: {
const uint16_t* buf = reinterpret_cast<const uint16_t*>(&buffer.data[accessor.byteOffset + bufferview.byteOffset]); const uint16_t* buf = reinterpret_cast<const uint16_t*>(&buffer.data[accessor.byteOffset + bufferView.byteOffset]);
for (size_t index = 0; index < accessor.count; index++) for (size_t index = 0; index < accessor.count; index++) {
{
indexBuffer.push_back(buf[index] + vertexStart); indexBuffer.push_back(buf[index] + vertexStart);
} }
break; break;
} }
case TINYGLTF_PARAMETER_TYPE_UNSIGNED_BYTE: { case TINYGLTF_PARAMETER_TYPE_UNSIGNED_BYTE: {
const uint8_t* buf = reinterpret_cast<const uint8_t*>(&buffer.data[accessor.byteOffset + bufferview.byteOffset]); const uint8_t* buf = reinterpret_cast<const uint8_t*>(&buffer.data[accessor.byteOffset + bufferView.byteOffset]);
for (size_t index = 0; index < accessor.count; index++) for (size_t index = 0; index < accessor.count; index++) {
{
indexBuffer.push_back(buf[index] + vertexStart); indexBuffer.push_back(buf[index] + vertexStart);
} }
break; break;
} }
default: default:
std::cerr << "index component type" << accessor.componentType << "not supported" << std::endl; std::cerr << "Index component type " << accessor.componentType << " not supported!" << std::endl;
return; return;
} }
} }
Primitive primitive{}; Primitive primitive{};
primitive.firstIndex = firstIndex; primitive.firstIndex = firstIndex;
primitive.indexCount = indexCount; primitive.indexCount = indexCount;
primitive.materialIndex = glTFPrimmitive.material; primitive.materialIndex = glTFPrimitive.material;
node->mesh.primitives.push_back(primitive); node->mesh.primitives.push_back(primitive);
} }
} }
if (parent)
{ if (parent) {
parent->children.push_back(node); parent->children.push_back(node);
} }
else else {
{
nodes.push_back(node); nodes.push_back(node);
} }
} }
// load skins from glTF model
void VulkanglTFModel::loadSkins(tinygltf::Model& input)
{
skins.resize(input.skins.size());
std::cout << input.skins.size() << std::endl;
for (size_t i = 0; i < input.skins.size(); i++)
{
tinygltf::Skin glTFSkin = input.skins[i];
skins[i].name = glTFSkin.name;
//follow the tree structure,find the root node of skeleton by index
skins[i].skeletonRoot = nodeFromIndex(glTFSkin.skeleton);
//join nodes
for (int jointIndex : glTFSkin.joints)
{
Node* node = nodeFromIndex(jointIndex);
if (node)
{
skins[i].joints.push_back(node);
}
}
//get the inverse bind matrices
if (glTFSkin.inverseBindMatrices > -1)
{
const tinygltf::Accessor& accessor = input.accessors[glTFSkin.inverseBindMatrices];
const tinygltf::BufferView& bufferview = input.bufferViews[accessor.bufferView];
const tinygltf::Buffer& buffer = input.buffers[bufferview.buffer];
skins[i].inverseBindMatrices.resize(accessor.count);
memcpy(skins[i].inverseBindMatrices.data(), &buffer.data[accessor.byteOffset + bufferview.byteOffset], accessor.count * sizeof(glm::mat4));
//create a host visible shader buffer to store inverse bind matrices for this skin
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_STORAGE_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&skins[i].ssbo,
sizeof(glm::mat4) * skins[i].inverseBindMatrices.size(),
skins[i].inverseBindMatrices.data()));
VK_CHECK_RESULT(skins[i].ssbo.map());
}
}
}
/*
vertex skinning functions
*/
glm::mat4 VulkanglTFModel::getNodeMatrix(VulkanglTFModel::Node* node)
{
glm::mat4 nodeMatrix = node->getLocalMatrix();
VulkanglTFModel::Node* currentParent = node->parent;
while (currentParent)
{
nodeMatrix = currentParent->getLocalMatrix() * nodeMatrix;
currentParent = currentParent->parent;
}
return nodeMatrix;
}
void VulkanglTFModel::updateJoints(VulkanglTFModel::Node* node)
{
if (node->skin > -1)
{
glm::mat4 inversTransform = glm::inverse(getNodeMatrix(node));
Skin skin = skins[node->skin];
size_t numJoints = (uint32_t)skin.joints.size();
std::vector<glm::mat4> jointMatrices(numJoints);
for (size_t i = 0; i < numJoints; i++)
{
jointMatrices[i] = getNodeMatrix(skin.joints[i]) * skin.inverseBindMatrices[i];
jointMatrices[i] = inversTransform * jointMatrices[i];
}
skin.ssbo.copyTo(jointMatrices.data(), jointMatrices.size() * sizeof(glm::mat4));
}
for (auto& child : node->children)
{
updateJoints(child);
}
}
void VulkanglTFModel::updateAnimation(float deltaTime)
{
if (activeAnimation > static_cast<uint32_t>(animations.size())-1)
{
std::cout << "no animation with index" << activeAnimation << std::endl;
return;
}
Animation& animation = animations[activeAnimation];
animation.currentTime += deltaTime;
if (animation.currentTime > animation.end)
{
animation.currentTime -= animation.end;
}
for (auto& channel : animation.channels)
{
AnimationSampler& sampler = animation.samplers[channel.samplerIndex];
for (size_t i = 0; i < sampler.inputs.size() - 1; i++)
{
if (sampler.interpolation != "LINEAR")
{
std::cout << "sample only supports linear interpolaton" << std::endl;
continue;
}
if ((animation.currentTime >= sampler.inputs[i]) && (animation.currentTime <= sampler.inputs[i + 1]))
{
float a = (animation.currentTime - sampler.inputs[i]) / (sampler.inputs[i + 1] - sampler.inputs[i]);
if (channel.path == "translation")
{
channel.node->translation = glm::mix(sampler.outputsVec4[i], sampler.outputsVec4[i + 1], a);
}
if (channel.path == "rotation")
{
//quaternion
glm::quat q1;
q1.x = sampler.outputsVec4[i].x;
q1.y = sampler.outputsVec4[i].y;
q1.z = sampler.outputsVec4[i].z;
q1.w = sampler.outputsVec4[i].w;
glm::quat q2;
q2.x = sampler.outputsVec4[i].x;
q2.y = sampler.outputsVec4[i].y;
q2.z = sampler.outputsVec4[i].z;
q2.w = sampler.outputsVec4[i].w;
channel.node->rotation = glm::normalize(glm::slerp(q1, q2, a));
}
if (channel.path == "scale")
{
channel.node->scale = glm::mix(sampler.outputsVec4[i], sampler.outputsVec4[i + 1], a);
}
}
}
}
for (auto& node : nodes)
{
updateJoints(node);
}
}
/* /*
glTF rendering functions glTF rendering functions
*/ */
// Draw a single node including child nodes (if present) // Draw a single node including child nodes (if present)
void VulkanglTFModel::drawNode(VkCommandBuffer commandBuffer, VkPipelineLayout pipelineLayout, VulkanglTFModel::Node node) void drawNode(VkCommandBuffer commandBuffer, VkPipelineLayout pipelineLayout, VulkanglTFModel::Node* node)
{ {
if (node.mesh.primitives.size() > 0) { if (node->mesh.primitives.size() > 0) {
// Pass the node's matrix via push constants // Pass the node's matrix via push constants
// Traverse the node hierarchy to the top-most parent to get the final matrix of the current node // Traverse the node hierarchy to the top-most parent to get the final matrix of the current node
glm::mat4 nodeMatrix = node.matrix; glm::mat4 nodeMatrix = node->matrix;
VulkanglTFModel::Node* currentParent = node.parent; VulkanglTFModel::Node* currentParent = node->parent;
while (currentParent) { while (currentParent) {
nodeMatrix = currentParent->matrix * nodeMatrix; nodeMatrix = currentParent->matrix * nodeMatrix;
currentParent = currentParent->parent; currentParent = currentParent->parent;
} }
// Pass the final matrix to the vertex shader using push constants // Pass the final matrix to the vertex shader using push constants
vkCmdPushConstants(commandBuffer, pipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(glm::mat4), &nodeMatrix); vkCmdPushConstants(commandBuffer, pipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(glm::mat4), &nodeMatrix);
for (VulkanglTFModel::Primitive& primitive : node->mesh.primitives) {
//vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 1, 1, &skins[node.skin].descriptorSet, 0, nullptr); if (primitive.indexCount > 0) {
for (VulkanglTFModel::Primitive& primitive : node.mesh.primitives) {
if (primitive.indexCount > 0)
{
// Get the texture index for this primitive // Get the texture index for this primitive
VulkanglTFModel::Texture texture = textures[materials[primitive.materialIndex].baseColorTextureIndex]; VulkanglTFModel::Texture texture = textures[materials[primitive.materialIndex].baseColorTextureIndex];
// Bind the descriptor for the current primitive's texture // Bind the descriptor for the current primitive's texture
vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 2, 1, &images[texture.imageIndex].descriptorSet, 0, nullptr); vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 1, 1, &images[texture.imageIndex].descriptorSet, 0, nullptr);
vkCmdDrawIndexed(commandBuffer, primitive.indexCount, 1, primitive.firstIndex, 0, 0); vkCmdDrawIndexed(commandBuffer, primitive.indexCount, 1, primitive.firstIndex, 0, 0);
} }
} }
} }
for (auto& child : node.children) { for (auto& child : node->children) {
drawNode(commandBuffer, pipelineLayout, *child); drawNode(commandBuffer, pipelineLayout, child);
} }
} }
// Draw the glTF scene starting at the top-level-nodes // Draw the glTF scene starting at the top-level-nodes
void VulkanglTFModel::draw(VkCommandBuffer commandBuffer, VkPipelineLayout pipelineLayout) void draw(VkCommandBuffer commandBuffer, VkPipelineLayout pipelineLayout)
{ {
// All vertices and indices are stored in single buffers, so we only need to bind once // All vertices and indices are stored in single buffers, so we only need to bind once
VkDeviceSize offsets[1] = { 0 }; VkDeviceSize offsets[1] = { 0 };
@ -592,15 +372,43 @@ VulkanglTFModel::~VulkanglTFModel()
vkCmdBindIndexBuffer(commandBuffer, indices.buffer, 0, VK_INDEX_TYPE_UINT32); vkCmdBindIndexBuffer(commandBuffer, indices.buffer, 0, VK_INDEX_TYPE_UINT32);
// Render all nodes at top-level // Render all nodes at top-level
for (auto& node : nodes) { for (auto& node : nodes) {
drawNode(commandBuffer, pipelineLayout, *node); drawNode(commandBuffer, pipelineLayout, node);
} }
} }
};
class VulkanExample : public VulkanExampleBase
{
public:
bool wireframe = false;
VulkanglTFModel glTFModel;
VulkanExample::VulkanExample(): struct ShaderData {
VulkanExampleBase(ENABLE_VALIDATION) vks::Buffer buffer;
struct Values {
glm::mat4 projection;
glm::mat4 model;
glm::vec4 lightPos = glm::vec4(5.0f, 5.0f, -5.0f, 1.0f);
glm::vec4 viewPos;
} values;
} shaderData;
struct Pipelines {
VkPipeline solid;
VkPipeline wireframe = VK_NULL_HANDLE;
} pipelines;
VkPipelineLayout pipelineLayout;
VkDescriptorSet descriptorSet;
struct DescriptorSetLayouts {
VkDescriptorSetLayout matrices;
VkDescriptorSetLayout textures;
} descriptorSetLayouts;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{ {
title = "homework1"; title = "homework1";
camera.type = Camera::CameraType::lookat; camera.type = Camera::CameraType::lookat;
@ -610,7 +418,7 @@ VulkanExample::VulkanExample():
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f); camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f);
} }
VulkanExample::~VulkanExample() ~VulkanExample()
{ {
// Clean up used Vulkan resources // Clean up used Vulkan resources
// Note : Inherited destructor cleans up resources stored in base class // Note : Inherited destructor cleans up resources stored in base class
@ -622,26 +430,24 @@ VulkanExample::~VulkanExample()
vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.matrices, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.matrices, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.textures, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.textures, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.jointMatrices, nullptr);
shaderData.buffer.destroy(); shaderData.buffer.destroy();
} }
void VulkanExample::getEnabledFeatures() virtual void getEnabledFeatures()
{ {
// Fill mode non solid is required for wireframe display // Fill mode non solid is required for wireframe display
if (deviceFeatures.fillModeNonSolid) { if (deviceFeatures.fillModeNonSolid) {
enabledFeatures.fillModeNonSolid = VK_TRUE; enabledFeatures.fillModeNonSolid = VK_TRUE;
}; };
} }
void VulkanExample::buildCommandBuffers() void buildCommandBuffers()
{ {
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo(); VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2]; VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[0].color = { { 0.25f, 0.25f, 0.25f, 1.0f } };; clearValues[0].color = { { 0.25f, 0.25f, 0.25f, 1.0f } };;
clearValues[1].depthStencil = { 1.0f, 0 }; clearValues[1].depthStencil = { 1.0f, 0 };
@ -674,7 +480,7 @@ void VulkanExample::getEnabledFeatures()
} }
} }
void VulkanExample::loadglTFFile(std::string filename) void loadglTFFile(std::string filename)
{ {
tinygltf::Model glTFInput; tinygltf::Model glTFInput;
tinygltf::TinyGLTF gltfContext; tinygltf::TinyGLTF gltfContext;
@ -696,23 +502,14 @@ void VulkanExample::getEnabledFeatures()
std::vector<uint32_t> indexBuffer; std::vector<uint32_t> indexBuffer;
std::vector<VulkanglTFModel::Vertex> vertexBuffer; std::vector<VulkanglTFModel::Vertex> vertexBuffer;
if (fileLoaded) if (fileLoaded) {
{
glTFModel.loadImages(glTFInput); glTFModel.loadImages(glTFInput);
glTFModel.loadMaterials(glTFInput); glTFModel.loadMaterials(glTFInput);
glTFModel.loadTextures(glTFInput); glTFModel.loadTextures(glTFInput);
glTFModel.loadSkins(glTFInput);
const tinygltf::Scene& scene = glTFInput.scenes[0]; const tinygltf::Scene& scene = glTFInput.scenes[0];
for (size_t i = 0; i < scene.nodes.size(); i++) { for (size_t i = 0; i < scene.nodes.size(); i++) {
const tinygltf::Node node = glTFInput.nodes[scene.nodes[i]]; const tinygltf::Node node = glTFInput.nodes[scene.nodes[i]];
glTFModel.loadNode(node, glTFInput, nullptr,scene.nodes[i], indexBuffer, vertexBuffer); glTFModel.loadNode(node, glTFInput, nullptr, indexBuffer, vertexBuffer);
}
glTFModel.loadAnimations(glTFInput);
// update joint in nodes
for (auto node : glTFModel.nodes)
{
glTFModel.updateJoints(node);
} }
} }
else { else {
@ -777,7 +574,6 @@ void VulkanExample::getEnabledFeatures()
&copyRegion); &copyRegion);
copyRegion.size = indexBufferSize; copyRegion.size = indexBufferSize;
vkCmdCopyBuffer( vkCmdCopyBuffer(
copyCmd, copyCmd,
indexStaging.buffer, indexStaging.buffer,
@ -794,12 +590,12 @@ void VulkanExample::getEnabledFeatures()
vkFreeMemory(device, indexStaging.memory, nullptr); vkFreeMemory(device, indexStaging.memory, nullptr);
} }
void VulkanExample::loadAssets() void loadAssets()
{ {
loadglTFFile(getAssetPath() + "models/CesiumMan/glTF/CesiumMan.gltf"); loadglTFFile(getAssetPath() + "buster_drone/busterDrone.gltf");
} }
void VulkanExample::setupDescriptors() void setupDescriptors()
{ {
/* /*
This sample uses separate descriptor sets (and layouts) for the matrices and materials (textures) This sample uses separate descriptor sets (and layouts) for the matrices and materials (textures)
@ -809,43 +605,24 @@ void VulkanExample::getEnabledFeatures()
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1), vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1),
// One combined image sampler per model image/texture // One combined image sampler per model image/texture
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, static_cast<uint32_t>(glTFModel.images.size())), vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, static_cast<uint32_t>(glTFModel.images.size())),
//initialize descriptor pool size for skin
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,static_cast<uint32_t>(glTFModel.skins.size())),
}; };
// One set for matrices and one per model image/texture // One set for matrices and one per model image/texture
const uint32_t maxSetCount = static_cast<uint32_t>(glTFModel.images.size()) + static_cast<uint32_t>(glTFModel.skins.size())+1; const uint32_t maxSetCount = static_cast<uint32_t>(glTFModel.images.size()) + 1;
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, maxSetCount); VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, maxSetCount);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
// Descriptor set layouts
VkDescriptorSetLayoutBinding setLayoutBinding{};
VkDescriptorSetLayoutCreateInfo descriptorSetLayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(&setLayoutBinding, 1);
// Descriptor set layout for passing matrices // Descriptor set layout for passing matrices
setLayoutBinding = vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0); VkDescriptorSetLayoutBinding setLayoutBinding = vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0);
VkDescriptorSetLayoutCreateInfo descriptorSetLayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(&setLayoutBinding, 1);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayouts.matrices)); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayouts.matrices));
// Descriptor set layout for passing material textures // Descriptor set layout for passing material textures
setLayoutBinding = vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 0); setLayoutBinding = vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 0);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayouts.textures)); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayouts.textures));
// Pipeline layout using both descriptor sets (set 0 = matrices, set 1 = material)
//Descriptor set layout for passing skin joint matrices std::array<VkDescriptorSetLayout, 2> setLayouts = { descriptorSetLayouts.matrices, descriptorSetLayouts.textures };
setLayoutBinding = vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayouts.jointMatrices));
// Pipeline layout using three descriptor sets (set 0 = matrices, set 1 = joint matrices, set 3 = material)
std::array<VkDescriptorSetLayout, 3> setLayouts =
{
descriptorSetLayouts.matrices,
descriptorSetLayouts.jointMatrices,
descriptorSetLayouts.textures
};
VkPipelineLayoutCreateInfo pipelineLayoutCI= vks::initializers::pipelineLayoutCreateInfo(setLayouts.data(), static_cast<uint32_t>(setLayouts.size())); VkPipelineLayoutCreateInfo pipelineLayoutCI= vks::initializers::pipelineLayoutCreateInfo(setLayouts.data(), static_cast<uint32_t>(setLayouts.size()));
// We will use push constants to push the local matrices of a primitive to the vertex shader // We will use push constants to push the local matrices of a primitive to the vertex shader
VkPushConstantRange pushConstantRange = vks::initializers::pushConstantRange(VK_SHADER_STAGE_VERTEX_BIT, sizeof(glm::mat4), 0); VkPushConstantRange pushConstantRange = vks::initializers::pushConstantRange(VK_SHADER_STAGE_VERTEX_BIT, sizeof(glm::mat4), 0);
// Push constant ranges are part of the pipeline layout // Push constant ranges are part of the pipeline layout
pipelineLayoutCI.pushConstantRangeCount = 1; pipelineLayoutCI.pushConstantRangeCount = 1;
pipelineLayoutCI.pPushConstantRanges = &pushConstantRange; pipelineLayoutCI.pPushConstantRanges = &pushConstantRange;
@ -856,16 +633,6 @@ void VulkanExample::getEnabledFeatures()
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet)); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &shaderData.buffer.descriptor); VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &shaderData.buffer.descriptor);
vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr); vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr);
//Descriptor sets for skin joint matrices
for (auto& skin : glTFModel.skins)
{
const VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.jointMatrices, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &skin.descriptorSet));
VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(skin.descriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 0, &skin.ssbo.descriptor);
vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr);
}
// Descriptor sets for materials // Descriptor sets for materials
for (auto& image : glTFModel.images) { for (auto& image : glTFModel.images) {
const VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.textures, 1); const VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.textures, 1);
@ -873,11 +640,9 @@ void VulkanExample::getEnabledFeatures()
VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(image.descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &image.texture.descriptor); VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(image.descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &image.texture.descriptor);
vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr); vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr);
} }
} }
void VulkanExample::preparePipelines() void preparePipelines()
{ {
VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationStateCI = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0); VkPipelineRasterizationStateCreateInfo rasterizationStateCI = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
@ -897,9 +662,6 @@ void VulkanExample::getEnabledFeatures()
vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, normal)),// Location 1: Normal vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, normal)),// Location 1: Normal
vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, uv)), // Location 2: Texture coordinates vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, uv)), // Location 2: Texture coordinates
vks::initializers::vertexInputAttributeDescription(0, 3, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, color)), // Location 3: Color vks::initializers::vertexInputAttributeDescription(0, 3, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, color)), // Location 3: Color
vks::initializers::vertexInputAttributeDescription(0, 4, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex,jointIndices)), // Location 4 : jointIndices
vks::initializers::vertexInputAttributeDescription(0, 5, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex,jointWeights)), //Location 5 : jointWeights
}; };
VkPipelineVertexInputStateCreateInfo vertexInputStateCI = vks::initializers::pipelineVertexInputStateCreateInfo(); VkPipelineVertexInputStateCreateInfo vertexInputStateCI = vks::initializers::pipelineVertexInputStateCreateInfo();
vertexInputStateCI.vertexBindingDescriptionCount = static_cast<uint32_t>(vertexInputBindings.size()); vertexInputStateCI.vertexBindingDescriptionCount = static_cast<uint32_t>(vertexInputBindings.size());
@ -936,7 +698,7 @@ void VulkanExample::getEnabledFeatures()
} }
// Prepare and initialize uniform buffer containing shader uniforms // Prepare and initialize uniform buffer containing shader uniforms
void VulkanExample::prepareUniformBuffers() void prepareUniformBuffers()
{ {
// Vertex shader uniform buffer block // Vertex shader uniform buffer block
VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_CHECK_RESULT(vulkanDevice->createBuffer(
@ -951,15 +713,15 @@ void VulkanExample::getEnabledFeatures()
updateUniformBuffers(); updateUniformBuffers();
} }
void VulkanExample::updateUniformBuffers() void updateUniformBuffers()
{ {
shaderData.values.projection = camera.matrices.perspective; shaderData.values.projection = camera.matrices.perspective;
shaderData.values.model = camera.matrices.view; shaderData.values.model = camera.matrices.view;
shaderData.values.viewPos = camera.viewPos;
memcpy(shaderData.buffer.mapped, &shaderData.values, sizeof(shaderData.values)); memcpy(shaderData.buffer.mapped, &shaderData.values, sizeof(shaderData.values));
} }
void VulkanExample::prepare() void prepare()
{ {
VulkanExampleBase::prepare(); VulkanExampleBase::prepare();
loadAssets(); loadAssets();
@ -970,24 +732,20 @@ void VulkanExample::getEnabledFeatures()
prepared = true; prepared = true;
} }
void VulkanExample::render() virtual void render()
{ {
renderFrame(); renderFrame();
if (camera.updated) { if (camera.updated) {
updateUniformBuffers(); updateUniformBuffers();
} }
if (!paused)
{
glTFModel.updateAnimation(frameTimer);
}
} }
void VulkanExample::viewChanged() virtual void viewChanged()
{ {
updateUniformBuffers(); updateUniformBuffers();
} }
void VulkanExample::OnUpdateUIOverlay(vks::UIOverlay *overlay) virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
{ {
if (overlay->header("Settings")) { if (overlay->header("Settings")) {
if (overlay->checkBox("Wireframe", &wireframe)) { if (overlay->checkBox("Wireframe", &wireframe)) {
@ -995,6 +753,6 @@ void VulkanExample::getEnabledFeatures()
} }
} }
} }
};
VULKAN_EXAMPLE_MAIN() VULKAN_EXAMPLE_MAIN()

View File

@ -1,226 +0,0 @@
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <vector>
#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>
#define TINYGLTF_IMPLEMENTATION
#define STB_IMAGE_IMPLEMENTATION
#define TINYGLTF_NO_STB_IMAGE_WRITE
#ifdef VK_USE_PLATFORM_ANDROID_KHR
#define TINYGLTF_ANDROID_LOAD_FROM_ASSETS
#endif
#include "tiny_gltf.h"
#include "vulkanexamplebase.h"
#define ENABLE_VALIDATION false
// Contains everything required to render a glTF model in Vulkan
// This class is heavily simplified (compared to glTF's feature set) but retains the basic glTF structure
class VulkanglTFModel
{
public:
// The class requires some Vulkan objects so it can create it's own resources
vks::VulkanDevice* vulkanDevice;
VkQueue copyQueue;
// The vertex layout for the samples' model
struct Vertex {
glm::vec3 pos;
glm::vec3 normal;
glm::vec2 uv;
glm::vec3 color;
glm::vec3 jointIndices;
glm::vec3 jointWeights;
};
// Single vertex buffer for all primitives
struct Vertices {
VkBuffer buffer;
VkDeviceMemory memory;
} vertices;
// Single index buffer for all primitives
struct Indices {
int count;
VkBuffer buffer;
VkDeviceMemory memory;
} indices;
// The following structures roughly represent the glTF scene structure
// To keep things simple, they only contain those properties that are required for this sample
struct Node;
// A primitive contains the data for a single draw call
struct Primitive {
uint32_t firstIndex;
uint32_t indexCount;
int32_t materialIndex;
};
// Contains the node's (optional) geometry and can be made up of an arbitrary number of primitives
struct Mesh {
std::vector<Primitive> primitives;
};
// A node represents an object in the glTF scene graph
struct Node {
Node* parent;
uint32_t index;
std::vector<Node*> children;
Mesh mesh;
glm::vec3 translation{};
glm::vec3 scale{ 1.0f };
glm::quat rotation{};
int32_t skin = -1;
glm::mat4 getLocalMatrix();
glm::mat4 matrix;
};
// A glTF material stores information in e.g. the texture that is attached to it and colors
struct Material {
glm::vec4 baseColorFactor = glm::vec4(1.0f);
uint32_t baseColorTextureIndex;
};
// Contains the texture for a single glTF image
// Images may be reused by texture objects and are as such separated
struct Image {
vks::Texture2D texture;
// We also store (and create) a descriptor set that's used to access this texture from the fragment shader
VkDescriptorSet descriptorSet;
};
// A glTF texture stores a reference to the image and a sampler
// In this sample, we are only interested in the image
struct Texture {
int32_t imageIndex;
};
// structure of skin
struct Skin {
std::string name;
Node* skeletonRoot = nullptr;
std::vector<glm::mat4> inverseBindMatrices;
std::vector<Node*> joints;
vks::Buffer ssbo;
VkDescriptorSet descriptorSet;
};
struct AnimationSampler
{
std::string interpolation;
std::vector<float> inputs;
std::vector<glm::vec4> outputsVec4;
};
struct AnimationChannel
{
std::string path;
Node* node;
uint32_t samplerIndex;
};
struct Animation
{
std::string name;
std::vector<AnimationSampler> samplers;
std::vector<AnimationChannel> channels;
float start = std::numeric_limits<float>::max();
float end = std::numeric_limits<float>::min();
float currentTime = 0.0f;
};
/*
Model data
*/
std::vector<Image> images;
std::vector<Texture> textures;
std::vector<Material> materials;
std::vector<Node*> nodes;
std::vector<Skin> skins;
std::vector<Animation> animations;
uint32_t activeAnimation = 0;
//VulkanglTFModel();
~VulkanglTFModel();
void loadImages(tinygltf::Model& input);
void loadTextures(tinygltf::Model& input);
void loadMaterials(tinygltf::Model& input);
Node* findNode(Node* parent, uint32_t index);
Node* nodeFromIndex(uint32_t index);
void loadSkins(tinygltf::Model& input);
void loadAnimations(tinygltf::Model& input);
void loadNode(const tinygltf::Node& inputNode, const tinygltf::Model& input, VulkanglTFModel::Node* parent, uint32_t nodeIndex, std::vector<uint32_t>& indexBuffer, std::vector<VulkanglTFModel::Vertex>& vertexBuffer);
glm::mat4 getNodeMatrix(VulkanglTFModel::Node* node);
void updateJoints(VulkanglTFModel::Node* node);
void updateAnimation(float deltaTime);
void drawNode(VkCommandBuffer commandBuffer, VkPipelineLayout pipelineLayout, VulkanglTFModel::Node node);
void draw(VkCommandBuffer commandBuffer, VkPipelineLayout pipelineLayout);
};
class VulkanExample : public VulkanExampleBase
{
public:
bool wireframe = false;
VulkanglTFModel glTFModel;
struct ShaderData {
vks::Buffer buffer;
struct Values {
glm::mat4 projection;
glm::mat4 model;
glm::vec4 lightPos = glm::vec4(5.0f, 5.0f, 5.0f, 1.0f);
glm::vec4 viewPos;
} values;
} shaderData;
struct Pipelines {
VkPipeline solid;
VkPipeline wireframe = VK_NULL_HANDLE;
} pipelines;
VkPipelineLayout pipelineLayout;
struct DescriptorSetLayouts {
VkDescriptorSetLayout matrices;
VkDescriptorSetLayout textures;
VkDescriptorSetLayout jointMatrices;
} descriptorSetLayouts;
VkDescriptorSet descriptorSet;
VulkanExample();
~VulkanExample();
void loadglTFFile(std::string filename);
virtual void getEnabledFeatures();
void buildCommandBuffers();
void loadAssets();
void setupDescriptors();
void preparePipelines();
void prepareUniformBuffers();
void updateUniformBuffers();
void prepare();
virtual void render();
virtual void viewChanged();
virtual void OnUpdateUIOverlay(vks::UIOverlay* overlay);
};