plumageRender/homework/homework1/homework1.cpp

759 lines
30 KiB
C++

/*
* Vulkan Example - glTF scene loading and rendering
*
* Copyright (C) 2020-2022 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
/*
* Shows how to load and display a simple scene from a glTF file
* Note that this isn't a complete glTF loader and only basic functions are shown here
* This means no complex materials, no animations, no skins, etc.
* For details on how glTF 2.0 works, see the official spec at https://github.com/KhronosGroup/glTF/tree/master/specification/2.0
*
* Other samples will load models using a dedicated model loader with more features (see base/VulkanglTFModel.hpp)
*
* If you are looking for a complete glTF implementation, check out https://github.com/SaschaWillems/Vulkan-glTF-PBR/
*/
#define TINYGLTF_IMPLEMENTATION
#define STB_IMAGE_IMPLEMENTATION
#define TINYGLTF_NO_STB_IMAGE_WRITE
#ifdef VK_USE_PLATFORM_ANDROID_KHR
#define TINYGLTF_ANDROID_LOAD_FROM_ASSETS
#endif
#include "tiny_gltf.h"
#include "vulkanexamplebase.h"
#define ENABLE_VALIDATION false
// Contains everything required to render a glTF model in Vulkan
// This class is heavily simplified (compared to glTF's feature set) but retains the basic glTF structure
class VulkanglTFModel
{
public:
// The class requires some Vulkan objects so it can create it's own resources
vks::VulkanDevice* vulkanDevice;
VkQueue copyQueue;
// The vertex layout for the samples' model
struct Vertex {
glm::vec3 pos;
glm::vec3 normal;
glm::vec2 uv;
glm::vec3 color;
};
// Single vertex buffer for all primitives
struct {
VkBuffer buffer;
VkDeviceMemory memory;
} vertices;
// Single index buffer for all primitives
struct {
int count;
VkBuffer buffer;
VkDeviceMemory memory;
} indices;
// The following structures roughly represent the glTF scene structure
// To keep things simple, they only contain those properties that are required for this sample
struct Node;
// A primitive contains the data for a single draw call
struct Primitive {
uint32_t firstIndex;
uint32_t indexCount;
int32_t materialIndex;
};
// Contains the node's (optional) geometry and can be made up of an arbitrary number of primitives
struct Mesh {
std::vector<Primitive> primitives;
};
// A node represents an object in the glTF scene graph
struct Node {
Node* parent;
std::vector<Node*> children;
Mesh mesh;
glm::mat4 matrix;
~Node() {
for (auto& child : children) {
delete child;
}
}
};
// A glTF material stores information in e.g. the texture that is attached to it and colors
struct Material {
glm::vec4 baseColorFactor = glm::vec4(1.0f);
uint32_t baseColorTextureIndex;
};
// Contains the texture for a single glTF image
// Images may be reused by texture objects and are as such separated
struct Image {
vks::Texture2D texture;
// We also store (and create) a descriptor set that's used to access this texture from the fragment shader
VkDescriptorSet descriptorSet;
};
// A glTF texture stores a reference to the image and a sampler
// In this sample, we are only interested in the image
struct Texture {
int32_t imageIndex;
};
/*
Model data
*/
std::vector<Image> images;
std::vector<Texture> textures;
std::vector<Material> materials;
std::vector<Node*> nodes;
~VulkanglTFModel()
{
for (auto node : nodes) {
delete node;
}
// Release all Vulkan resources allocated for the model
vkDestroyBuffer(vulkanDevice->logicalDevice, vertices.buffer, nullptr);
vkFreeMemory(vulkanDevice->logicalDevice, vertices.memory, nullptr);
vkDestroyBuffer(vulkanDevice->logicalDevice, indices.buffer, nullptr);
vkFreeMemory(vulkanDevice->logicalDevice, indices.memory, nullptr);
for (Image image : images) {
vkDestroyImageView(vulkanDevice->logicalDevice, image.texture.view, nullptr);
vkDestroyImage(vulkanDevice->logicalDevice, image.texture.image, nullptr);
vkDestroySampler(vulkanDevice->logicalDevice, image.texture.sampler, nullptr);
vkFreeMemory(vulkanDevice->logicalDevice, image.texture.deviceMemory, nullptr);
}
}
/*
glTF loading functions
The following functions take a glTF input model loaded via tinyglTF and convert all required data into our own structure
*/
void loadImages(tinygltf::Model& input)
{
// Images can be stored inside the glTF (which is the case for the sample model), so instead of directly
// loading them from disk, we fetch them from the glTF loader and upload the buffers
images.resize(input.images.size());
for (size_t i = 0; i < input.images.size(); i++) {
tinygltf::Image& glTFImage = input.images[i];
// Get the image data from the glTF loader
unsigned char* buffer = nullptr;
VkDeviceSize bufferSize = 0;
bool deleteBuffer = false;
// We convert RGB-only images to RGBA, as most devices don't support RGB-formats in Vulkan
if (glTFImage.component == 3) {
bufferSize = glTFImage.width * glTFImage.height * 4;
buffer = new unsigned char[bufferSize];
unsigned char* rgba = buffer;
unsigned char* rgb = &glTFImage.image[0];
for (size_t i = 0; i < glTFImage.width * glTFImage.height; ++i) {
memcpy(rgba, rgb, sizeof(unsigned char) * 3);
rgba += 4;
rgb += 3;
}
deleteBuffer = true;
}
else {
buffer = &glTFImage.image[0];
bufferSize = glTFImage.image.size();
}
// Load texture from image buffer
images[i].texture.fromBuffer(buffer, bufferSize, VK_FORMAT_R8G8B8A8_UNORM, glTFImage.width, glTFImage.height, vulkanDevice, copyQueue);
if (deleteBuffer) {
delete[] buffer;
}
}
}
void loadTextures(tinygltf::Model& input)
{
textures.resize(input.textures.size());
for (size_t i = 0; i < input.textures.size(); i++) {
textures[i].imageIndex = input.textures[i].source;
}
}
void loadMaterials(tinygltf::Model& input)
{
materials.resize(input.materials.size());
for (size_t i = 0; i < input.materials.size(); i++) {
// We only read the most basic properties required for our sample
tinygltf::Material glTFMaterial = input.materials[i];
// Get the base color factor
if (glTFMaterial.values.find("baseColorFactor") != glTFMaterial.values.end()) {
materials[i].baseColorFactor = glm::make_vec4(glTFMaterial.values["baseColorFactor"].ColorFactor().data());
}
// Get base color texture index
if (glTFMaterial.values.find("baseColorTexture") != glTFMaterial.values.end()) {
materials[i].baseColorTextureIndex = glTFMaterial.values["baseColorTexture"].TextureIndex();
}
}
}
void loadNode(const tinygltf::Node& inputNode, const tinygltf::Model& input, VulkanglTFModel::Node* parent, std::vector<uint32_t>& indexBuffer, std::vector<VulkanglTFModel::Vertex>& vertexBuffer)
{
VulkanglTFModel::Node* node = new VulkanglTFModel::Node{};
node->matrix = glm::mat4(1.0f);
node->parent = parent;
// Get the local node matrix
// It's either made up from translation, rotation, scale or a 4x4 matrix
if (inputNode.translation.size() == 3) {
node->matrix = glm::translate(node->matrix, glm::vec3(glm::make_vec3(inputNode.translation.data())));
}
if (inputNode.rotation.size() == 4) {
glm::quat q = glm::make_quat(inputNode.rotation.data());
node->matrix *= glm::mat4(q);
}
if (inputNode.scale.size() == 3) {
node->matrix = glm::scale(node->matrix, glm::vec3(glm::make_vec3(inputNode.scale.data())));
}
if (inputNode.matrix.size() == 16) {
node->matrix = glm::make_mat4x4(inputNode.matrix.data());
};
// Load node's children
if (inputNode.children.size() > 0) {
for (size_t i = 0; i < inputNode.children.size(); i++) {
loadNode(input.nodes[inputNode.children[i]], input , node, indexBuffer, vertexBuffer);
}
}
// If the node contains mesh data, we load vertices and indices from the buffers
// In glTF this is done via accessors and buffer views
if (inputNode.mesh > -1) {
const tinygltf::Mesh mesh = input.meshes[inputNode.mesh];
// Iterate through all primitives of this node's mesh
for (size_t i = 0; i < mesh.primitives.size(); i++) {
const tinygltf::Primitive& glTFPrimitive = mesh.primitives[i];
uint32_t firstIndex = static_cast<uint32_t>(indexBuffer.size());
uint32_t vertexStart = static_cast<uint32_t>(vertexBuffer.size());
uint32_t indexCount = 0;
// Vertices
{
const float* positionBuffer = nullptr;
const float* normalsBuffer = nullptr;
const float* texCoordsBuffer = nullptr;
size_t vertexCount = 0;
// Get buffer data for vertex positions
if (glTFPrimitive.attributes.find("POSITION") != glTFPrimitive.attributes.end()) {
const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.attributes.find("POSITION")->second];
const tinygltf::BufferView& view = input.bufferViews[accessor.bufferView];
positionBuffer = reinterpret_cast<const float*>(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset]));
vertexCount = accessor.count;
}
// Get buffer data for vertex normals
if (glTFPrimitive.attributes.find("NORMAL") != glTFPrimitive.attributes.end()) {
const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.attributes.find("NORMAL")->second];
const tinygltf::BufferView& view = input.bufferViews[accessor.bufferView];
normalsBuffer = reinterpret_cast<const float*>(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset]));
}
// Get buffer data for vertex texture coordinates
// glTF supports multiple sets, we only load the first one
if (glTFPrimitive.attributes.find("TEXCOORD_0") != glTFPrimitive.attributes.end()) {
const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.attributes.find("TEXCOORD_0")->second];
const tinygltf::BufferView& view = input.bufferViews[accessor.bufferView];
texCoordsBuffer = reinterpret_cast<const float*>(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset]));
}
// Append data to model's vertex buffer
for (size_t v = 0; v < vertexCount; v++) {
Vertex vert{};
vert.pos = glm::vec4(glm::make_vec3(&positionBuffer[v * 3]), 1.0f);
vert.normal = glm::normalize(glm::vec3(normalsBuffer ? glm::make_vec3(&normalsBuffer[v * 3]) : glm::vec3(0.0f)));
vert.uv = texCoordsBuffer ? glm::make_vec2(&texCoordsBuffer[v * 2]) : glm::vec3(0.0f);
vert.color = glm::vec3(1.0f);
vertexBuffer.push_back(vert);
}
}
// Indices
{
const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.indices];
const tinygltf::BufferView& bufferView = input.bufferViews[accessor.bufferView];
const tinygltf::Buffer& buffer = input.buffers[bufferView.buffer];
indexCount += static_cast<uint32_t>(accessor.count);
// glTF supports different component types of indices
switch (accessor.componentType) {
case TINYGLTF_PARAMETER_TYPE_UNSIGNED_INT: {
const uint32_t* buf = reinterpret_cast<const uint32_t*>(&buffer.data[accessor.byteOffset + bufferView.byteOffset]);
for (size_t index = 0; index < accessor.count; index++) {
indexBuffer.push_back(buf[index] + vertexStart);
}
break;
}
case TINYGLTF_PARAMETER_TYPE_UNSIGNED_SHORT: {
const uint16_t* buf = reinterpret_cast<const uint16_t*>(&buffer.data[accessor.byteOffset + bufferView.byteOffset]);
for (size_t index = 0; index < accessor.count; index++) {
indexBuffer.push_back(buf[index] + vertexStart);
}
break;
}
case TINYGLTF_PARAMETER_TYPE_UNSIGNED_BYTE: {
const uint8_t* buf = reinterpret_cast<const uint8_t*>(&buffer.data[accessor.byteOffset + bufferView.byteOffset]);
for (size_t index = 0; index < accessor.count; index++) {
indexBuffer.push_back(buf[index] + vertexStart);
}
break;
}
default:
std::cerr << "Index component type " << accessor.componentType << " not supported!" << std::endl;
return;
}
}
Primitive primitive{};
primitive.firstIndex = firstIndex;
primitive.indexCount = indexCount;
primitive.materialIndex = glTFPrimitive.material;
node->mesh.primitives.push_back(primitive);
}
}
if (parent) {
parent->children.push_back(node);
}
else {
nodes.push_back(node);
}
}
/*
glTF rendering functions
*/
// Draw a single node including child nodes (if present)
void drawNode(VkCommandBuffer commandBuffer, VkPipelineLayout pipelineLayout, VulkanglTFModel::Node* node)
{
if (node->mesh.primitives.size() > 0) {
// Pass the node's matrix via push constants
// Traverse the node hierarchy to the top-most parent to get the final matrix of the current node
glm::mat4 nodeMatrix = node->matrix;
VulkanglTFModel::Node* currentParent = node->parent;
while (currentParent) {
nodeMatrix = currentParent->matrix * nodeMatrix;
currentParent = currentParent->parent;
}
// Pass the final matrix to the vertex shader using push constants
vkCmdPushConstants(commandBuffer, pipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(glm::mat4), &nodeMatrix);
for (VulkanglTFModel::Primitive& primitive : node->mesh.primitives) {
if (primitive.indexCount > 0) {
// Get the texture index for this primitive
VulkanglTFModel::Texture texture = textures[materials[primitive.materialIndex].baseColorTextureIndex];
// Bind the descriptor for the current primitive's texture
vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 1, 1, &images[texture.imageIndex].descriptorSet, 0, nullptr);
vkCmdDrawIndexed(commandBuffer, primitive.indexCount, 1, primitive.firstIndex, 0, 0);
}
}
}
for (auto& child : node->children) {
drawNode(commandBuffer, pipelineLayout, child);
}
}
// Draw the glTF scene starting at the top-level-nodes
void draw(VkCommandBuffer commandBuffer, VkPipelineLayout pipelineLayout)
{
// All vertices and indices are stored in single buffers, so we only need to bind once
VkDeviceSize offsets[1] = { 0 };
vkCmdBindVertexBuffers(commandBuffer, 0, 1, &vertices.buffer, offsets);
vkCmdBindIndexBuffer(commandBuffer, indices.buffer, 0, VK_INDEX_TYPE_UINT32);
// Render all nodes at top-level
for (auto& node : nodes) {
drawNode(commandBuffer, pipelineLayout, node);
}
}
};
class VulkanExample : public VulkanExampleBase
{
public:
bool wireframe = false;
VulkanglTFModel glTFModel;
struct ShaderData {
vks::Buffer buffer;
struct Values {
glm::mat4 projection;
glm::mat4 model;
glm::vec4 lightPos = glm::vec4(5.0f, 5.0f, -5.0f, 1.0f);
glm::vec4 viewPos;
} values;
} shaderData;
struct Pipelines {
VkPipeline solid;
VkPipeline wireframe = VK_NULL_HANDLE;
} pipelines;
VkPipelineLayout pipelineLayout;
VkDescriptorSet descriptorSet;
struct DescriptorSetLayouts {
VkDescriptorSetLayout matrices;
VkDescriptorSetLayout textures;
} descriptorSetLayouts;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
title = "homework1";
camera.type = Camera::CameraType::lookat;
camera.flipY = true;
camera.setPosition(glm::vec3(0.0f, -0.1f, -1.0f));
camera.setRotation(glm::vec3(0.0f, 45.0f, 0.0f));
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f);
}
~VulkanExample()
{
// Clean up used Vulkan resources
// Note : Inherited destructor cleans up resources stored in base class
vkDestroyPipeline(device, pipelines.solid, nullptr);
if (pipelines.wireframe != VK_NULL_HANDLE) {
vkDestroyPipeline(device, pipelines.wireframe, nullptr);
}
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.matrices, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.textures, nullptr);
shaderData.buffer.destroy();
}
virtual void getEnabledFeatures()
{
// Fill mode non solid is required for wireframe display
if (deviceFeatures.fillModeNonSolid) {
enabledFeatures.fillModeNonSolid = VK_TRUE;
};
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[0].color = { { 0.25f, 0.25f, 0.25f, 1.0f } };;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
const VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
const VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
// Bind scene matrices descriptor to set 0
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, nullptr);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, wireframe ? pipelines.wireframe : pipelines.solid);
glTFModel.draw(drawCmdBuffers[i], pipelineLayout);
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void loadglTFFile(std::string filename)
{
tinygltf::Model glTFInput;
tinygltf::TinyGLTF gltfContext;
std::string error, warning;
this->device = device;
#if defined(__ANDROID__)
// On Android all assets are packed with the apk in a compressed form, so we need to open them using the asset manager
// We let tinygltf handle this, by passing the asset manager of our app
tinygltf::asset_manager = androidApp->activity->assetManager;
#endif
bool fileLoaded = gltfContext.LoadASCIIFromFile(&glTFInput, &error, &warning, filename);
// Pass some Vulkan resources required for setup and rendering to the glTF model loading class
glTFModel.vulkanDevice = vulkanDevice;
glTFModel.copyQueue = queue;
std::vector<uint32_t> indexBuffer;
std::vector<VulkanglTFModel::Vertex> vertexBuffer;
if (fileLoaded) {
glTFModel.loadImages(glTFInput);
glTFModel.loadMaterials(glTFInput);
glTFModel.loadTextures(glTFInput);
const tinygltf::Scene& scene = glTFInput.scenes[0];
for (size_t i = 0; i < scene.nodes.size(); i++) {
const tinygltf::Node node = glTFInput.nodes[scene.nodes[i]];
glTFModel.loadNode(node, glTFInput, nullptr, indexBuffer, vertexBuffer);
}
}
else {
vks::tools::exitFatal("Could not open the glTF file.\n\nThe file is part of the additional asset pack.\n\nRun \"download_assets.py\" in the repository root to download the latest version.", -1);
return;
}
// Create and upload vertex and index buffer
// We will be using one single vertex buffer and one single index buffer for the whole glTF scene
// Primitives (of the glTF model) will then index into these using index offsets
size_t vertexBufferSize = vertexBuffer.size() * sizeof(VulkanglTFModel::Vertex);
size_t indexBufferSize = indexBuffer.size() * sizeof(uint32_t);
glTFModel.indices.count = static_cast<uint32_t>(indexBuffer.size());
struct StagingBuffer {
VkBuffer buffer;
VkDeviceMemory memory;
} vertexStaging, indexStaging;
// Create host visible staging buffers (source)
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
vertexBufferSize,
&vertexStaging.buffer,
&vertexStaging.memory,
vertexBuffer.data()));
// Index data
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
indexBufferSize,
&indexStaging.buffer,
&indexStaging.memory,
indexBuffer.data()));
// Create device local buffers (target)
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
vertexBufferSize,
&glTFModel.vertices.buffer,
&glTFModel.vertices.memory));
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
indexBufferSize,
&glTFModel.indices.buffer,
&glTFModel.indices.memory));
// Copy data from staging buffers (host) do device local buffer (gpu)
VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
VkBufferCopy copyRegion = {};
copyRegion.size = vertexBufferSize;
vkCmdCopyBuffer(
copyCmd,
vertexStaging.buffer,
glTFModel.vertices.buffer,
1,
&copyRegion);
copyRegion.size = indexBufferSize;
vkCmdCopyBuffer(
copyCmd,
indexStaging.buffer,
glTFModel.indices.buffer,
1,
&copyRegion);
vulkanDevice->flushCommandBuffer(copyCmd, queue, true);
// Free staging resources
vkDestroyBuffer(device, vertexStaging.buffer, nullptr);
vkFreeMemory(device, vertexStaging.memory, nullptr);
vkDestroyBuffer(device, indexStaging.buffer, nullptr);
vkFreeMemory(device, indexStaging.memory, nullptr);
}
void loadAssets()
{
loadglTFFile(getAssetPath() + "buster_drone/busterDrone.gltf");
}
void setupDescriptors()
{
/*
This sample uses separate descriptor sets (and layouts) for the matrices and materials (textures)
*/
std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1),
// One combined image sampler per model image/texture
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, static_cast<uint32_t>(glTFModel.images.size())),
};
// One set for matrices and one per model image/texture
const uint32_t maxSetCount = static_cast<uint32_t>(glTFModel.images.size()) + 1;
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, maxSetCount);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
// Descriptor set layout for passing matrices
VkDescriptorSetLayoutBinding setLayoutBinding = vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0);
VkDescriptorSetLayoutCreateInfo descriptorSetLayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(&setLayoutBinding, 1);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayouts.matrices));
// Descriptor set layout for passing material textures
setLayoutBinding = vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 0);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayouts.textures));
// Pipeline layout using both descriptor sets (set 0 = matrices, set 1 = material)
std::array<VkDescriptorSetLayout, 2> setLayouts = { descriptorSetLayouts.matrices, descriptorSetLayouts.textures };
VkPipelineLayoutCreateInfo pipelineLayoutCI= vks::initializers::pipelineLayoutCreateInfo(setLayouts.data(), static_cast<uint32_t>(setLayouts.size()));
// We will use push constants to push the local matrices of a primitive to the vertex shader
VkPushConstantRange pushConstantRange = vks::initializers::pushConstantRange(VK_SHADER_STAGE_VERTEX_BIT, sizeof(glm::mat4), 0);
// Push constant ranges are part of the pipeline layout
pipelineLayoutCI.pushConstantRangeCount = 1;
pipelineLayoutCI.pPushConstantRanges = &pushConstantRange;
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayout));
// Descriptor set for scene matrices
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.matrices, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &shaderData.buffer.descriptor);
vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr);
// Descriptor sets for materials
for (auto& image : glTFModel.images) {
const VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.textures, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &image.descriptorSet));
VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(image.descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &image.texture.descriptor);
vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr);
}
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationStateCI = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentStateCI = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendStateCI = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentStateCI);
VkPipelineDepthStencilStateCreateInfo depthStencilStateCI = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportStateCI = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleStateCI = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
const std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamicStateCI = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables.data(), static_cast<uint32_t>(dynamicStateEnables.size()), 0);
// Vertex input bindings and attributes
const std::vector<VkVertexInputBindingDescription> vertexInputBindings = {
vks::initializers::vertexInputBindingDescription(0, sizeof(VulkanglTFModel::Vertex), VK_VERTEX_INPUT_RATE_VERTEX),
};
const std::vector<VkVertexInputAttributeDescription> vertexInputAttributes = {
vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, pos)), // Location 0: Position
vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, normal)),// Location 1: Normal
vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, uv)), // Location 2: Texture coordinates
vks::initializers::vertexInputAttributeDescription(0, 3, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFModel::Vertex, color)), // Location 3: Color
};
VkPipelineVertexInputStateCreateInfo vertexInputStateCI = vks::initializers::pipelineVertexInputStateCreateInfo();
vertexInputStateCI.vertexBindingDescriptionCount = static_cast<uint32_t>(vertexInputBindings.size());
vertexInputStateCI.pVertexBindingDescriptions = vertexInputBindings.data();
vertexInputStateCI.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertexInputAttributes.size());
vertexInputStateCI.pVertexAttributeDescriptions = vertexInputAttributes.data();
const std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages = {
loadShader(getHomeworkShadersPath() + "homework1/mesh.vert.spv", VK_SHADER_STAGE_VERTEX_BIT),
loadShader(getHomeworkShadersPath() + "homework1/mesh.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT)
};
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0);
pipelineCI.pVertexInputState = &vertexInputStateCI;
pipelineCI.pInputAssemblyState = &inputAssemblyStateCI;
pipelineCI.pRasterizationState = &rasterizationStateCI;
pipelineCI.pColorBlendState = &colorBlendStateCI;
pipelineCI.pMultisampleState = &multisampleStateCI;
pipelineCI.pViewportState = &viewportStateCI;
pipelineCI.pDepthStencilState = &depthStencilStateCI;
pipelineCI.pDynamicState = &dynamicStateCI;
pipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCI.pStages = shaderStages.data();
// Solid rendering pipeline
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.solid));
// Wire frame rendering pipeline
if (deviceFeatures.fillModeNonSolid) {
rasterizationStateCI.polygonMode = VK_POLYGON_MODE_LINE;
rasterizationStateCI.lineWidth = 1.0f;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.wireframe));
}
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Vertex shader uniform buffer block
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&shaderData.buffer,
sizeof(shaderData.values)));
// Map persistent
VK_CHECK_RESULT(shaderData.buffer.map());
updateUniformBuffers();
}
void updateUniformBuffers()
{
shaderData.values.projection = camera.matrices.perspective;
shaderData.values.model = camera.matrices.view;
shaderData.values.viewPos = camera.viewPos;
memcpy(shaderData.buffer.mapped, &shaderData.values, sizeof(shaderData.values));
}
void prepare()
{
VulkanExampleBase::prepare();
loadAssets();
prepareUniformBuffers();
setupDescriptors();
preparePipelines();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
renderFrame();
if (camera.updated) {
updateUniformBuffers();
}
}
virtual void viewChanged()
{
updateUniformBuffers();
}
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
{
if (overlay->header("Settings")) {
if (overlay->checkBox("Wireframe", &wireframe)) {
buildCommandBuffers();
}
}
}
};
VULKAN_EXAMPLE_MAIN()