387 lines
7.1 KiB
Markdown
387 lines
7.1 KiB
Markdown
---
|
||
title: "《线性代数》矩阵乘法与线性变换复合"
|
||
date: 2023-08-06T15:02:43+08:00
|
||
|
||
---
|
||
|
||
## 矩阵与复合线性变换的关系
|
||
|
||
复合线性变换:完成一次变换后再次进行变换,如先旋转再剪切。与一次变换相同,也可通过追踪$\hat{i}$和$\hat{j}$来确定变换后的向量变换
|
||
|
||
新矩阵表示了一个单独的作用来完成复合线性变换
|
||
|
||
对于一个先旋转后剪切的线性变换,可以用以下方式来进行计算
|
||
|
||
选左乘旋转矩阵再左乘剪切矩阵,数值上表示对一个给定向量进行旋转然后剪切
|
||
|
||
$$
|
||
\begin{bmatrix}
|
||
1 & 1 \\\\
|
||
0 & 1
|
||
\end{bmatrix}
|
||
(\begin{bmatrix}
|
||
0 & -1 \\\\
|
||
1 & 0
|
||
\end{bmatrix}
|
||
\begin{bmatrix}
|
||
x \\\\
|
||
y
|
||
\end{bmatrix}) =
|
||
\begin{bmatrix}
|
||
1 & -1 \\\\
|
||
1 & 0
|
||
\end{bmatrix}
|
||
\begin{bmatrix}
|
||
x \\\\
|
||
y
|
||
\end{bmatrix}
|
||
$$
|
||
|
||
由此可得,对于下列矩阵,需要从右向左读,即先应用右侧矩阵描述的变换再应用左侧矩阵描述的变换
|
||
|
||
$$
|
||
\begin{bmatrix}
|
||
1 & 1 \\\\
|
||
0 & 1
|
||
\end{bmatrix}
|
||
\begin{bmatrix}
|
||
0 & -1 \\\\
|
||
1 & 0
|
||
\end{bmatrix} =
|
||
\begin{bmatrix}
|
||
1 & -1 \\\\
|
||
1 & 0
|
||
\end{bmatrix}
|
||
$$
|
||
|
||
**两个矩阵相乘有着几何意义,即两个线性变换相继作用**
|
||
|
||
## 矩阵相乘计算流程
|
||
|
||
$$
|
||
\begin{bmatrix}
|
||
a & b \\\\
|
||
c & d
|
||
\end{bmatrix}
|
||
\begin{bmatrix}
|
||
e & f \\\\
|
||
g & h
|
||
\end{bmatrix} =
|
||
\begin{bmatrix}
|
||
? & ? \\\\
|
||
? & ?
|
||
\end{bmatrix}
|
||
$$
|
||
|
||
首先,要得知$\hat{i}$的终点可由第二个矩阵的第一列得知,因此
|
||
|
||
$$
|
||
\begin{bmatrix}
|
||
a & b \\\\
|
||
c & d
|
||
\end{bmatrix}
|
||
\begin{bmatrix}
|
||
e \\\\
|
||
g
|
||
\end{bmatrix} =
|
||
e
|
||
\begin{bmatrix}
|
||
a \\\\
|
||
c
|
||
\end{bmatrix} +
|
||
g
|
||
\begin{bmatrix}
|
||
b \\\\
|
||
d
|
||
\end{bmatrix} =
|
||
\begin{bmatrix}
|
||
ae + bg \\\\
|
||
ce + dg
|
||
\end{bmatrix}
|
||
$$
|
||
|
||
其次,$\hat{j}$终点在右侧矩阵第二列所表示的位置上
|
||
|
||
$$
|
||
\begin{bmatrix}
|
||
a & b \\\\
|
||
c & d
|
||
\end{bmatrix}
|
||
\begin{bmatrix}
|
||
f \\\\
|
||
h
|
||
\end{bmatrix} =
|
||
f
|
||
\begin{bmatrix}
|
||
a \\\\
|
||
c
|
||
\end{bmatrix} +
|
||
h
|
||
\begin{bmatrix}
|
||
b \\\\
|
||
d
|
||
\end{bmatrix} =
|
||
\begin{bmatrix}
|
||
af + bh \\\\
|
||
cf + dh
|
||
\end{bmatrix}
|
||
$$
|
||
|
||
可得最终结果为
|
||
|
||
$$
|
||
\begin{bmatrix}
|
||
a & b \\\\
|
||
c & d
|
||
\end{bmatrix}
|
||
\begin{bmatrix}
|
||
e & f \\\\
|
||
g & h
|
||
\end{bmatrix} =
|
||
\begin{bmatrix}
|
||
ae + bg & af + bh \\\\
|
||
ce + dg & cd + dh
|
||
\end{bmatrix}
|
||
$$
|
||
|
||
### 矩阵相乘顺序
|
||
|
||
$$
|
||
M_1M_2 \not ={M_2M_1}
|
||
$$
|
||
|
||
矩阵相乘结果受顺序影响
|
||
|
||
可由相乘本质是进行多次线性变换得知,改变变换的顺序会导致不同的结果
|
||
|
||

|
||
|
||
对于结合律,本质上没有改变变换的顺序,因而不会导致结果不同
|
||
|
||
$$
|
||
A(BC) = (AB)C
|
||
$$
|
||
|
||

|
||
|
||
|
||
## 三维空间下的线性变换
|
||
|
||
三维空间下的线性变换可由二维拓展,都可由基向量表示所有的向量
|
||
|
||
三维下需要引入三个基向量,X轴的$\hat{i}$,Y轴的$\hat{j}$,Z轴的$\hat{k}$
|
||
|
||
需要得知变换后的向量位置只需要将坐标与矩阵的对应列相乘
|
||
|
||
$$
|
||
\begin{bmatrix}
|
||
0 & 1 & 2 \\\\
|
||
3 & 4 & 5 \\\\
|
||
6 & 7 & 8
|
||
\end{bmatrix}
|
||
\begin{bmatrix}
|
||
x \\\\
|
||
y \\\\
|
||
z
|
||
\end{bmatrix} =
|
||
x
|
||
\begin{bmatrix}
|
||
0 \\\\
|
||
3 \\\\
|
||
6
|
||
\end{bmatrix}+
|
||
y
|
||
\begin{bmatrix}
|
||
1 \\\\
|
||
4 \\\\
|
||
7
|
||
\end{bmatrix} +
|
||
z
|
||
\begin{bmatrix}
|
||
2 \\\\
|
||
5 \\\\
|
||
8
|
||
\end{bmatrix} =
|
||
\begin{bmatrix}
|
||
0+y+2z \\\\
|
||
3x+4y+5z \\\\
|
||
6x+7y+8z
|
||
\end{bmatrix}
|
||
$$
|
||
|
||
对于两个矩阵相乘也是类似的,第二个矩阵的三个列分别对应三个基向量的位置
|
||
|
||
$$
|
||
\begin{bmatrix}
|
||
0 & -2 & 2 \\\\
|
||
5 & 1 & 5 \\\\
|
||
1 & 4 & -1
|
||
\end{bmatrix}
|
||
\begin{bmatrix}
|
||
0 & 1 & 2 \\\\
|
||
3 & 4 & 5 \\\\
|
||
6 & 7 & 8
|
||
\end{bmatrix}
|
||
$$
|
||
|
||
$\hat{i}$的终点可由第二个矩阵的第一列得知
|
||
|
||
$$
|
||
\begin{bmatrix}
|
||
0 & -2 & 2 \\\\
|
||
5 & 1 & 5 \\\\
|
||
1 & 4 & -1
|
||
\end{bmatrix}
|
||
\begin{bmatrix}
|
||
0 \\\\
|
||
3 \\\\
|
||
6
|
||
\end{bmatrix} =
|
||
0
|
||
\begin{bmatrix}
|
||
0 \\\\
|
||
5 \\\\
|
||
1
|
||
\end{bmatrix} +
|
||
3
|
||
\begin{bmatrix}
|
||
-2 \\\\
|
||
1 \\\\
|
||
4
|
||
\end{bmatrix} +
|
||
6
|
||
\begin{bmatrix}
|
||
2 \\\\
|
||
5 \\\\
|
||
-1
|
||
\end{bmatrix} =
|
||
\begin{bmatrix}
|
||
0-6+12 \\\\
|
||
0+3+30 \\\\
|
||
0+12-6
|
||
\end{bmatrix}
|
||
$$
|
||
|
||
$\hat{j}$的终点可由第二个矩阵的第二列得知
|
||
|
||
$$
|
||
\begin{bmatrix}
|
||
0 & -2 & 2 \\\\
|
||
5 & 1 & 5 \\\\
|
||
1 & 4 & -1
|
||
\end{bmatrix}
|
||
\begin{bmatrix}
|
||
1 \\\\
|
||
4 \\\\
|
||
7
|
||
\end{bmatrix} =
|
||
1
|
||
\begin{bmatrix}
|
||
0 \\\\
|
||
5 \\\\
|
||
1
|
||
\end{bmatrix} +
|
||
4
|
||
\begin{bmatrix}
|
||
-2 \\\\
|
||
1 \\\\
|
||
4
|
||
\end{bmatrix} +
|
||
7
|
||
\begin{bmatrix}
|
||
2 \\\\
|
||
5 \\\\
|
||
-1
|
||
\end{bmatrix} =
|
||
\begin{bmatrix}
|
||
0-8+14 \\\\
|
||
5+4+35 \\\\
|
||
1+16-7
|
||
\end{bmatrix}
|
||
$$
|
||
|
||
$\hat{k}$的终点可由第二个矩阵的第三列得知
|
||
|
||
$$
|
||
\begin{bmatrix}
|
||
0 & -2 & 2 \\\\
|
||
5 & 1 & 5 \\\\
|
||
1 & 4 & -1
|
||
\end{bmatrix}
|
||
\begin{bmatrix}
|
||
2 \\\\
|
||
5 \\\\
|
||
8
|
||
\end{bmatrix} =
|
||
2
|
||
\begin{bmatrix}
|
||
0 \\\\
|
||
5 \\\\
|
||
1
|
||
\end{bmatrix} +
|
||
5
|
||
\begin{bmatrix}
|
||
-2 \\\\
|
||
1 \\\\
|
||
4
|
||
\end{bmatrix} +
|
||
8
|
||
\begin{bmatrix}
|
||
2 \\\\
|
||
5 \\\\
|
||
-1
|
||
\end{bmatrix} =
|
||
\begin{bmatrix}
|
||
0-10+16 \\\\
|
||
10+5+40 \\\\
|
||
2+20-8
|
||
\end{bmatrix}
|
||
$$
|
||
|
||
所以最终结果为
|
||
|
||
$$
|
||
\begin{bmatrix}
|
||
0 & -2 & 2 \\\\
|
||
5 & 1 & 5 \\\\
|
||
1 & 4 & -1
|
||
\end{bmatrix}
|
||
\begin{bmatrix}
|
||
0 & 1 & 2 \\\\
|
||
3 & 4 & 5 \\\\
|
||
6 & 7 & 8
|
||
\end{bmatrix} =
|
||
\begin{bmatrix}
|
||
0-6+12 & 0-8+14 & 0-10+16 \\\\
|
||
0+3+30 & 5+4+35 & 10+5+40 \\\\
|
||
0+12-6 & 1+16-7 & 2+20-8
|
||
\end{bmatrix}
|
||
$$
|
||
|
||
## 非方阵
|
||
|
||
对于一个3$\times$2矩阵$\begin{bmatrix}
|
||
2 & 0 \\\\
|
||
-1 & 1 \\\\
|
||
-2 & 1
|
||
\end{bmatrix}$同样可以用线性变换来解释,只是输入向量和输出向量在不同维度上,因而没有关联
|
||
|
||
第一列认为是变换后的$\hat{i}$,第二列认为是变换后的$\hat{j}$
|
||
|
||
列空间是三维空间中一个过原点的二维平面,但由于列空间的维数与输入空间维数相等,依旧是满秩的,几何意义是将二维空间映射到三维空间上
|
||
|
||
---
|
||
|
||
同样地,对于一个2 $\times$ 3矩阵
|
||
|
||
|
||
|
||
几何上表示将三维空间映射到二维空间上
|
||
|
||

|
||
|
||
---
|
||
|
||
二维到一维空间的转换也存在,一维空间本质就是数轴,即将两个基向量压缩到一条直线上,如果直线上有一系列等距分布的点,在映射到数轴后依旧保持等距分布此处不再过多赘述
|
||
|
||
 |